QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2070|回复: 2
打印 上一主题 下一主题

美赛数模论文之公式写作

[复制链接]
字体大小: 正常 放大
回帖奖励 2 点体力 回复本帖可获得 2 点体力奖励! 每人限 1 次

326

主题

32

听众

1万

积分

  • TA的每日心情
    慵懒
    2020-7-12 09:52
  • 签到天数: 116 天

    [LV.6]常住居民II

    管理员

    群组2018教师培训(呼和浩

    群组2017-05-04 量化投资实

    群组2017“草原杯”夏令营

    群组2018美赛冲刺培训

    群组2017 田老师国赛冲刺课

    跳转到指定楼层
    1#
    发表于 2020-2-12 17:14 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    由假设得到公式( s: j0 z* Q4 ?7 C
    1.We assume laminar flow and use Bernoulli's equation:(由假设得到的公式)8 e- T, w' ?9 `& j' n3 z$ o
    . i  @5 ?7 O$ J% b; k/ P
    公式
    / z; i* V8 _! \( U$ d
    * m1 D% `( x' R8 g' b% l+ S4 y/ vWhere4 A8 t( n( h' X* w
    5 l9 }8 N, P8 `: Y7 P% v6 @, k
    符号解释# i. f0 ~4 w9 B# P0 x8 h

    8 z" H! H: O+ |6 k1 p, c3 o( oAccording to the assumptions, at every junction we have (由于假设)
    ' D/ {: N! L7 {* U1 t4 d: D/ n# w" K( T) f, m
    公式0 d2 G( T* _( A1 P" s3 S3 u7 k

    1 W  c' {6 N) Z9 u) n, F7 L& T/ |由原因得到公式
    7 \2 b  [- ~8 v8 e& f6 @  L) n2.Because our field is flat, we have公式, so the height of our source relative to our sprinklers does not affect the exit speed v2 (由原因得到的公式);
    , b" y) D% @+ r2 }8 ~7 j# q
    4 e. h" u6 M! ]9 }" v公式, C% n. }" K% O" G+ Z

    8 u/ B0 e% M+ Z# ]" N# g! `Since the fluid is incompressible(由于液体是不可压缩的), we have
    9 m, A1 G& j' Q+ x- l) u& B, M
    . U/ `6 s  ~$ t' u* H) ~/ G: T( r公式/ J/ }5 R. z$ E* L

    % A# t( \0 m" K5 aWhere6 T4 L/ s2 L- P- m% J7 r; j
    # B% J2 M" _( G% ?
    公式2 \# T& m2 g1 I; c8 _

    ( i* M0 u9 z% w0 B" y5 ~0 U5 \用原来的公式推出公式3 @! \  M5 l5 ?3 U$ m
    3.Plugging v1 into the equation for v2 ,we obtain (将公式1代入公式2中得到)
    , L$ B3 F" }% X' g4 _/ {2 @/ ^. ?) ]5 H0 c9 ^4 ^4 l/ D
    公式, _( C6 G. u# V; e& u1 P7 C/ ?

    2 u! ^" n7 H' g: w: S11.Putting these together(把公式放在一起), because of the law of conservation of energy, yields:2 }- b1 `$ T0 N- K# L3 @
    7 ^; Z- P- Q2 U8 h1 N$ P7 ~6 A
    公式
    & F# d  ?$ U: f" g2 g
    + B2 W0 A6 ^  H8 V- C12.Therefore, from (2),(3),(5), we have the ith junction(由前几个公式得)
    & ?7 f1 d0 D$ p. ~2 e7 s- v, s$ q' i5 B2 }$ g8 e1 K2 v
    公式- c6 r* N# P) T  N

    6 g, ^3 @  s- J( ^, ^# a3 T; R2 n2 jPutting (1)-(5) together, we can obtain pup at every junction . in fact, at the last junction, we have4 Y) c' R! M  w/ m: l
    7 {6 \9 i- k% c( ~7 u
    公式3 h& A3 |9 a+ A/ ]; |8 C

    " G+ d5 t2 f1 u) QPutting these into (1) ,we get(把这些公式代入1中)1 H4 ~8 R9 i8 L, H" G! ^1 t9 {

    / o& R7 I- \! j# P0 i! V4 s公式
    : w# z3 Q" p# N5 S$ g! `
    5 {* t, E4 O- Y  n" VWhich means that the
    ' Z- ]# m' b5 B7 P& l! }
    $ O0 h. I5 `- T' C4 p2 BCommonly, h is about
    3 ~2 A* k$ R; }# U0 w
    % H# z8 J, u+ I2 N! q0 YFrom these equations, (从这个公式中我们知道)we know that ………
    + b( G: _: ?4 w% A5 b9 i6 ?0 p- S$ _3 _1 @: t& @
     
    " p; ?& T$ \+ [0 t; @0 a6 C
    6 g+ u7 J' B4 D引出约束条件$ Z+ @* f4 s# w: Y2 A9 E
    4.Using pressure and discharge data from Rain Bird 结果,! J' Z$ F4 U3 M, {8 R4 {6 r2 H" q
      t6 Z7 x3 r, x" E8 J- J( u
    We find the attenuation factor (得到衰减因子,常数,系数) to be& w$ O2 d+ W- Y. W& M# E+ b/ [

    6 @! _$ b9 M) p; _公式
    # o" p$ A- `% l  I0 k0 F
    # `( _# A- k9 s+ n% \/ }6 W计算结果2 s  A8 _2 g, m& c* W$ w
    6.To find the new pressure ,we use the ( 0 0),which states that the volume of water flowing in equals the volume of water flowing out : (为了找到新值,我们用什么方程)
    ! {+ k( A0 k" N) r9 s; t4 h9 K) [7 W3 y+ m5 ?6 V: V# `. |  n( d3 ]. U
    公式
    9 }! K/ S  C' q* x5 Y# ]* e- D
    $ m( p* M: J; m9 |6 ]4 ^- {; O0 p2 |Where
    8 H3 \) l5 t; E6 n% [: G* j# l5 k- g5 H2 {
    () is ;;
    ! t" ^: ?9 z2 D) @5 a3 c4 S2 `; N7 u2 }  {/ t0 J7 ~8 _
    7.Solving for VN we obtain (公式的解)9 T. o3 h  w6 e5 x  W- j+ a$ n7 B) j

    ) H1 y/ Y5 X; @, Y' `8 t公式
    ) o3 J+ d$ `+ M6 q* Y, ?2 J5 {( y# l% L; c- T
    Where n is the …..8 ^6 M& h5 l0 [4 V4 i& V3 P& Z
    2 F! x5 I9 s+ @& y& g7 Z
     
    + c" h0 V9 c5 D1 v$ O* p1 P
    ' n, |3 t7 A) C* [# a5 q8.We have the following differential equations for speeds in the x- and y- directions:
    ( e) ~+ c, v8 _' q9 `& q: F* P1 Q2 o4 H7 k% Z
    公式! A" S8 d* V8 j- T6 a9 i( P0 K

    / T' L! l2 ?" C; q" AWhose solutions are (解)  M; G9 c8 Y1 z4 }& L

    ( I0 T5 b/ B+ S$ q公式
    ; P; Q4 l6 Z9 d* O. |* K6 S
    ( d5 x- e& I/ q9.We use the following initial conditions ( 使用初值 ) to determine the drag constant:# d9 U+ D% j- |
    , z4 g  A4 T+ x5 I! v0 X# A
    公式* x9 j- C# l# c
    1 V% a/ M) P# G, g- H
    根据原有公式  a6 b! m% I, M( T% y% V  T
    10.We apply the law of conservation of energy(根据能量守恒定律). The work done by the forces is* n3 Q  K* j* n, e3 F
      K2 {' w* a* b
    公式
    - e2 i. D6 U- ]0 _* T# P+ r1 a+ S
    6 X; i# f4 f9 u& jThe decrease in potential energy is (势能的减少)! n3 m# ]1 s. f4 |

    0 g% N" k3 [6 S/ ?* \; z* |/ @& P$ D公式
      @' w( J( R' i
    ! \6 j9 C9 }. q, l7 L* yThe increase in kinetic energy is (动能的增加)$ V8 D% Z2 M* U$ l1 P6 H

    - ]. Q2 ~7 \* C- U' J公式
    - |; u1 A" ^6 m/ ]. j- t$ w$ b! o% ^& P! H8 c' D# u( y3 w
    Drug acts directly against velocity, so the acceleration vector from drag can be found Newton's law F=ma as : (牛顿第二定律)6 h1 ?1 Z9 j6 c$ V) x) |
    & e, T7 R1 }. B0 B, d. w3 a
    Where a is the acceleration vector and m is mass
    . h3 m3 [7 V5 h" O, z& u
    6 G4 h. A5 P! D& I5 F 0 g7 W; W% F: k) i. o
    8 ]) W0 w- \3 ~4 t( x' O0 J
    Using the Newton's Second Law, we have that F/m=a and
    8 I" J/ ]0 F! s9 D* I0 @) e5 p+ R! @4 F$ G& l9 @
    公式+ g7 o9 S/ `, D* ?% L6 e8 K3 x) k
    * `6 B" r6 [, Q2 v/ x
    So that1 y4 c) W6 F0 |# c3 n; E

    / N# X( J0 F0 J4 m/ D" i公式
    % L) K; s: l0 N- V* B
    , K+ K% K9 q+ K  C9 E* BSetting the two expressions for t1/t2 equal and cross-multiplying gives
    ( y( P* K1 N* i, S7 b8 m( X5 o, H2 w0 a3 c2 `
    公式
    3 Z/ g1 ?6 W  K! V& ~' h- @$ Q9 ?9 C: [. d) p
    22.We approximate the binomial distribution of contenders with a normal distribution:
    - x! c8 t( f4 J9 k- ^0 D) e8 p$ {5 E1 d* L3 u
    公式
    9 J, v0 j* \! C1 H% N5 y6 l: h5 ?  H# R( |+ Q9 d
    Where x is the cumulative distribution function of the standard normal distribution. Clearing denominators and solving the resulting quadratic in B gives
    0 s2 h* C2 P' h6 `# {" J% Q8 m) G5 Q# Z+ k1 I' Y. v  e
    公式/ |8 D4 F& G4 u3 z2 O4 }9 H3 i
    $ a9 t6 X: E2 y0 v! [
    As an analytic approximation to . for k=1, we get B=c
    & A" w1 F3 Z. _, `% U+ a
    % v' a3 D( A8 U; [- W  i  G6 H+ t  u 
    ( N/ c; t2 M0 ~% @1 M9 o
    : |* d+ Q; N1 r8 }26.Integrating, (使结合)we get PVT=constant, where1 @+ E$ U! X4 o& Y
    ; f" Z. }( R. B$ J: [
    公式  I5 J5 w& W. D# c: `% m  Q' m4 \
    & ^1 p% c) B! O4 E; w$ e! J. P& D
    The main composition of the air is nitrogen and oxygen, so i=5 and r=1.4, so1 c5 g; d1 |% c5 c5 v4 F: H3 d
      M( a& j0 \6 \" K) W: w
     
    9 b, k, F3 f4 d( E; r2 W  v: X
    ) z/ @- E$ z( k5 @& A; ?; L) V' L23.According to First Law of Thermodynamics, we get
    9 E# O8 c1 i) ~5 t3 O9 s2 ~9 H5 D4 ^- U% w6 Q3 j
    公式0 w; N# N3 U. g5 Q4 G( o# n6 [: w
    8 p1 l! R2 P  F* K5 O! K) F
    Where ( ) . we also then have
    4 m- {' X" A  ]9 o8 `% P- l6 H/ k) H0 _8 z0 K! @! L' J
    公式
    ) f+ r  z7 s0 q$ E- |6 F  {5 W% U( X6 S3 R/ X0 a0 [' ?
    Where P is the pressure of the gas and V is the volume. We put them into the Ideal Gas Internal Formula:
    8 q9 R' ~2 k2 i( I: L2 w! t' x  N
    ) b& ?" V  v5 j2 P* ^" F# A公式
    & O* f. E$ K4 A1 @. E' ?' L8 B" Z
    : z- D, z' f3 u6 z7 h; J; M) AWhere
    . m1 q) }+ E! r4 [6 C1 c# V' U
    ) C) ]: v- j/ X- D( m* \) H : [* U% W# f9 \1 o. |

    + B; f3 f& T. S0 i7 [对公式变形# d" I9 M7 u0 j0 W: t& G! \
    13.Define A=nlw to be the ( )(定义); rearranging (1) produces (将公式变形得到)
    % Z- ^5 ^6 a# c/ D/ x) }
    5 e4 E( `* T5 G5 t公式; S4 _7 I9 ]+ Y* x  R

    # K1 b1 o# T$ c& IWe maximize E for each layer, subject to the constraint (2). The calculations are easier if we minimize 1/E.(为了得到最大值,求他倒数的最小值) Neglecting constant factors (忽略常数), we minimize/ S' J8 g6 ?& W

    1 ]! b/ _% y$ j& g, }2 {公式
    3 h) g; ^1 F: r: [* g& `8 G5 \6 v- h8 i7 f
    使服从约束条件: ]! Y& f2 A1 Y5 _, @5 z2 B) {
    14.Subject to the constraint (使服从约束条件)' ^3 y; K8 p# u+ l) N4 d
    9 W# \( h6 T: ^
    公式8 V* E1 x/ s6 F3 U
    ! X1 D3 |; b6 T! B8 Y
    Where B is constant defined in (2). However, as long as we are obeying this constraint, we can write (根据约束条件我们得到)4 M5 X+ M" N( T- g

    % v4 \# w2 d: a$ i& R! ?2 \/ P7 x公式
    $ J+ \' ~; E3 e" n7 f. Q% f
    ( O# C' p# m9 y: u1 _# |And thus f depends only on h , the function f is minimized at (求最小值)
      H; S' y1 E) d6 T8 O
      w2 k) i5 a6 g6 ~6 }7 m+ A4 D8 ?公式0 v/ w2 U# B+ m) H/ z9 t# U. d/ j
    ' ^2 I' ?$ M8 b2 y, v
    At this value of h, the constraint reduces to6 O9 Q* O8 e7 w

    . ^6 |+ e' r# ~' V% k1 _公式
    & X8 h' i5 }: \! v) L3 j. I; p" p, u8 X/ |6 w, x) f
    结果说明
    ! n% L. Z) ~# P5 E" z1 t15.This implies(暗示) that the harmonic mean of l and w should be
    ) w! ^+ {3 F. V3 x" E/ m# v+ h+ {/ p
    公式7 X4 K' v) a1 _8 p
    & B4 D/ z) z2 d& q
    So , in the optimal situation. ………
    $ Q$ a, q* b9 v. u+ Q8 Y
    * A* i. @. f( C" A, p) p- T5.This value shows very little loss due to friction.(结果说明) The escape speed with friction is
    . K+ K, A6 v) E  H7 B" k, P# G/ ^) q+ L$ b- i$ }9 `/ N% C* d
    公式; x7 o' Z& A7 y/ n6 Y

    6 r, B, ?; q+ D# |# G% v* X16. We use a similar process to find the position of the droplet, resulting in
    & _8 Y$ Z9 G0 a" i2 l  v9 C
    / W8 ~2 o/ y( Q3 {- ~5 k公式" o& u3 y" Y' D$ H  b8 Y
    / [: w' t: f/ }2 u, s8 D2 B& \
    With t=0.0001 s, error from the approximation is virtually zero.5 b- }1 P: v6 {% D& C
    . q# B4 p+ @# H6 F9 V) j* r
     
    9 C  _' q% z3 M4 P1 L, Q2 X
    * K9 U! x- [; W, T1 m) n/ F17.We calculated its trajectory(轨道) using
    ) e! R8 J& p, z, U4 \4 e5 k$ r7 {) r! f! x, [0 d, `/ Z
    公式
    ( C* n/ Q8 h7 n6 Y1 o1 t
    3 E) m  f, c! C3 m! v% u18.For that case, using the same expansion for e as above,- H& W0 `8 I& K% k, \

    . K2 l& i6 o& u1 U0 P! X2 ]7 z公式# k$ z( e; X8 `0 n
    ) F; i/ P. Q& ^! ]9 A2 ?* L. P- o
    19.Solving for t and equating it to the earlier expression for t, we get
    3 O% O, f" N* F3 |6 `( Z: u. }1 i* T+ g7 N% q
    公式+ n2 B+ O/ M/ W/ B5 w+ A# X3 n  q. z
    " H+ h* t& [0 ^, i+ d
    20.Recalling that in this equality only n is a function of f, we substitute for n and solve for f. the result is: G3 i% n6 Y. _5 H# c& i- w+ r! b2 [
    , |# o% c" y7 e, T  x/ ?( T
    公式
    ! K, ]! _+ D0 W0 v' ^
    5 h. C* Y1 B1 x- ~" }As v=…, this equation becomes singular (单数的).
    9 ~4 P2 ~6 {7 _* o( s' h- U) E, Y
     
    " I5 q1 ~/ b! [: G, R1 R" i6 d# N; _* s8 f+ N  j. W; \6 O
    由语句得到公式2 D- p% _* E- Z4 X0 Y1 ^
    21.The revenue generated by the flight is
    # r7 Y0 d8 V* N6 E- ?* M/ o6 r1 o3 Q
    公式5 ~% R' L1 v% S: s( m) Q5 |. F3 A; a9 \: y

    ! F' T# X& z% D. ?% C! S 
    , z' ^* ]5 v6 o7 T' L/ X# j. M" m2 G3 T! ^1 X& H/ {) r
    24.Then we have
    2 i- R( k9 z" S5 O" @  B1 S
    , o9 n7 c9 L' e. X2 D/ e0 h% Z6 F公式
    % o" ^2 |* W; c* \4 o  f7 f6 L
    & ]7 Z" q8 R& Y8 hWe differentiate the ideal-gas state equation& }6 }! w5 A$ e8 _) C: w( q
    1 ?* @* h' _- I/ ?  D6 a7 C- N2 D
    公式6 O- M, w0 T! k0 X; c! q* a

    3 Z0 ?( }" u  F" CGetting
    & J+ F* Q: Z, O. e/ W$ }' |" d, J) W6 g# O2 r3 s* V7 m* R
    公式
    2 i: t. k& P4 r/ f
    3 e9 D2 S5 l* n* d! y# r; D) ]. ^25.We eliminate dT from the last two equations to get (排除因素得到)( F2 c! }1 h7 E8 x+ e( H
    ; `: P: M# d* t% I$ F
    公式$ P7 H/ X3 x. l
    # O: t, n* J- F/ k( {2 {+ P
     6 u; T6 d8 f; P. g( D
    - C0 o, e# `0 w( G
    22.We fist examine the path that the motorcycle follows. Taking the air resistance into account, we get two differential equations
    4 b% s' [5 v- R: ~6 ]3 A1 `
    0 Q7 g9 W! e9 b: k公式! Y. ?" W6 G* m0 ^2 T: a

    6 |7 ~; v, W) H2 \Where P is the relative pressure. We must first find the speed v1 of water at our source: (找初值)
    5 {2 e% ^; t, P% g2 Y7 Y7 d
    : T. n& h6 Y% ]9 y; @* n公式
    " n8 e3 D0 b& D- f5 o4 S7 A( I————————————————
    & ~2 E, [0 x# u: X# M版权声明:本文为CSDN博主「闪闪亮亮」的原创文章。0 B# a7 ?; f1 L$ }* D4 t
    原文链接:https://blog.csdn.net/u011692048/article/details/77474386
    7 [% h# Q) x4 q6 c2 `8 H) @# t3 ]. Z) Y4 B
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏1 支持支持0 反对反对0 微信微信

    0

    主题

    1

    听众

    34

    积分

    升级  30.53%

  • TA的每日心情
    郁闷
    2020-2-17 15:16
  • 签到天数: 5 天

    [LV.2]偶尔看看I

    群组数学建模美赛备战群组

    群组数学建模培训课堂1

    群组Matlab讨论组

    群组数学中国美赛辅助报名

    回复

    使用道具 举报

    chace        

    0

    主题

    2

    听众

    259

    积分

    升级  79.5%

  • TA的每日心情

    2020-7-11 15:12
  • 签到天数: 43 天

    [LV.5]常住居民I

    网络挑战赛参赛者

    自我介绍
    学生
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-5-25 08:06 , Processed in 1.341133 second(s), 62 queries .

    回顶部