由假设得到公式( s: j0 z* Q4 ?7 C
1.We assume laminar flow and use Bernoulli's equation:(由假设得到的公式)8 e- T, w' ?9 `& j' n3 z$ o
. i @5 ?7 O$ J% b; k/ P
公式 / z; i* V8 _! \( U$ d * m1 D% `( x' R8 g' b% l+ S4 y/ vWhere4 A8 t( n( h' X* w
5 l9 }8 N, P8 `: Y7 P% v6 @, k
符号解释# i. f0 ~4 w9 B# P0 x8 h
8 z" H! H: O+ |6 k1 p, c3 o( oAccording to the assumptions, at every junction we have (由于假设) ' D/ {: N! L7 {* U1 t4 d: D/ n# w" K( T) f, m
公式0 d2 G( T* _( A1 P" s3 S3 u7 k
1 W c' {6 N) Z9 u) n, F7 L& T/ |由原因得到公式 7 \2 b [- ~8 v8 e& f6 @ L) n2.Because our field is flat, we have公式, so the height of our source relative to our sprinklers does not affect the exit speed v2 (由原因得到的公式); , b" y) D% @+ r2 }8 ~7 j# q 4 e. h" u6 M! ]9 }" v公式, C% n. }" K% O" G+ Z
8 u/ B0 e% M+ Z# ]" N# g! `Since the fluid is incompressible(由于液体是不可压缩的), we have 9 m, A1 G& j' Q+ x- l) u& B, M . U/ `6 s ~$ t' u* H) ~/ G: T( r公式/ J/ }5 R. z$ E* L
( i* M0 u9 z% w0 B" y5 ~0 U5 \用原来的公式推出公式3 @! \ M5 l5 ?3 U$ m
3.Plugging v1 into the equation for v2 ,we obtain (将公式1代入公式2中得到) , L$ B3 F" }% X' g4 _/ {2 @/ ^. ?) ]5 H0 c9 ^4 ^4 l/ D
公式, _( C6 G. u# V; e& u1 P7 C/ ?
2 u! ^" n7 H' g: w: S11.Putting these together(把公式放在一起), because of the law of conservation of energy, yields:2 }- b1 `$ T0 N- K# L3 @
7 ^; Z- P- Q2 U8 h1 N$ P7 ~6 A
公式 & F# d ?$ U: f" g2 g + B2 W0 A6 ^ H8 V- C12.Therefore, from (2),(3),(5), we have the ith junction(由前几个公式得) & ?7 f1 d0 D$ p. ~2 e7 s- v, s$ q' i5 B2 }$ g8 e1 K2 v
公式- c6 r* N# P) T N
6 g, ^3 @ s- J( ^, ^# a3 T; R2 n2 jPutting (1)-(5) together, we can obtain pup at every junction . in fact, at the last junction, we have4 Y) c' R! M w/ m: l
7 {6 \9 i- k% c( ~7 u
公式3 h& A3 |9 a+ A/ ]; |8 C
" G+ d5 t2 f1 u) QPutting these into (1) ,we get(把这些公式代入1中)1 H4 ~8 R9 i8 L, H" G! ^1 t9 {
/ o& R7 I- \! j# P0 i! V4 s公式 : w# z3 Q" p# N5 S$ g! ` 5 {* t, E4 O- Y n" VWhich means that the ' Z- ]# m' b5 B7 P& l! } $ O0 h. I5 `- T' C4 p2 BCommonly, h is about 3 ~2 A* k$ R; }# U0 w % H# z8 J, u+ I2 N! q0 YFrom these equations, (从这个公式中我们知道)we know that ……… + b( G: _: ?4 w% A5 b9 i6 ?0 p- S$ _3 _1 @: t& @
" p; ?& T$ \+ [0 t; @0 a6 C 6 g+ u7 J' B4 D引出约束条件$ Z+ @* f4 s# w: Y2 A9 E
4.Using pressure and discharge data from Rain Bird 结果,! J' Z$ F4 U3 M, {8 R4 {6 r2 H" q
t6 Z7 x3 r, x" E8 J- J( u
We find the attenuation factor (得到衰减因子,常数,系数) to be& w$ O2 d+ W- Y. W& M# E+ b/ [
6 @! _$ b9 M) p; _公式 # o" p$ A- `% l I0 k0 F # `( _# A- k9 s+ n% \/ }6 W计算结果2 s A8 _2 g, m& c* W$ w
6.To find the new pressure ,we use the ( 0 0),which states that the volume of water flowing in equals the volume of water flowing out : (为了找到新值,我们用什么方程) ! {+ k( A0 k" N) r9 s; t4 h9 K) [7 W3 y+ m5 ?6 V: V# `. | n( d3 ]. U
公式 9 }! K/ S C' q* x5 Y# ]* e- D $ m( p* M: J; m9 |6 ]4 ^- {; O0 p2 |Where 8 H3 \) l5 t; E6 n% [: G* j# l5 k- g5 H2 {
() is ;; ! t" ^: ?9 z2 D) @5 a3 c4 S2 `; N7 u2 } {/ t0 J7 ~8 _
7.Solving for VN we obtain (公式的解)9 T. o3 h w6 e5 x W- j+ a$ n7 B) j
) H1 y/ Y5 X; @, Y' `8 t公式 ) o3 J+ d$ `+ M6 q* Y, ?2 J5 {( y# l% L; c- T
Where n is the …..8 ^6 M& h5 l0 [4 V4 i& V3 P& Z
2 F! x5 I9 s+ @& y& g7 Z
+ c" h0 V9 c5 D1 v$ O* p1 P ' n, |3 t7 A) C* [# a5 q8.We have the following differential equations for speeds in the x- and y- directions: ( e) ~+ c, v8 _' q9 `& q: F* P1 Q2 o4 H7 k% Z
公式! A" S8 d* V8 j- T6 a9 i( P0 K
/ T' L! l2 ?" C; q" AWhose solutions are (解) M; G9 c8 Y1 z4 }& L
( I0 T5 b/ B+ S$ q公式 ; P; Q4 l6 Z9 d* O. |* K6 S ( d5 x- e& I/ q9.We use the following initial conditions ( 使用初值 ) to determine the drag constant:# d9 U+ D% j- |
, z4 g A4 T+ x5 I! v0 X# A
公式* x9 j- C# l# c
1 V% a/ M) P# G, g- H
根据原有公式 a6 b! m% I, M( T% y% V T
10.We apply the law of conservation of energy(根据能量守恒定律). The work done by the forces is* n3 Q K* j* n, e3 F
K2 {' w* a* b
公式 - e2 i. D6 U- ]0 _* T# P+ r1 a+ S 6 X; i# f4 f9 u& jThe decrease in potential energy is (势能的减少)! n3 m# ]1 s. f4 |
0 g% N" k3 [6 S/ ?* \; z* |/ @& P$ D公式 @' w( J( R' i ! \6 j9 C9 }. q, l7 L* yThe increase in kinetic energy is (动能的增加)$ V8 D% Z2 M* U$ l1 P6 H
- ]. Q2 ~7 \* C- U' J公式 - |; u1 A" ^6 m/ ]. j- t$ w$ b! o% ^& P! H8 c' D# u( y3 w
Drug acts directly against velocity, so the acceleration vector from drag can be found Newton's law F=ma as : (牛顿第二定律)6 h1 ?1 Z9 j6 c$ V) x) |
& e, T7 R1 }. B0 B, d. w3 a
Where a is the acceleration vector and m is mass . h3 m3 [7 V5 h" O, z& u 6 G4 h. A5 P! D& I5 F 0 g7 W; W% F: k) i. o
8 ]) W0 w- \3 ~4 t( x' O0 J
Using the Newton's Second Law, we have that F/m=a and 8 I" J/ ]0 F! s9 D* I0 @) e5 p+ R! @4 F$ G& l9 @
公式+ g7 o9 S/ `, D* ?% L6 e8 K3 x) k
* `6 B" r6 [, Q2 v/ x
So that1 y4 c) W6 F0 |# c3 n; E
/ N# X( J0 F0 J4 m/ D" i公式 % L) K; s: l0 N- V* B , K+ K% K9 q+ K C9 E* BSetting the two expressions for t1/t2 equal and cross-multiplying gives ( y( P* K1 N* i, S7 b8 m( X5 o, H2 w0 a3 c2 `
公式 3 Z/ g1 ?6 W K! V& ~' h- @$ Q9 ?9 C: [. d) p
22.We approximate the binomial distribution of contenders with a normal distribution: - x! c8 t( f4 J9 k- ^0 D) e8 p$ {5 E1 d* L3 u
公式 9 J, v0 j* \! C1 H% N5 y6 l: h5 ? H# R( |+ Q9 d
Where x is the cumulative distribution function of the standard normal distribution. Clearing denominators and solving the resulting quadratic in B gives 0 s2 h* C2 P' h6 `# {" J% Q8 m) G5 Q# Z+ k1 I' Y. v e
公式/ |8 D4 F& G4 u3 z2 O4 }9 H3 i
$ a9 t6 X: E2 y0 v! [
As an analytic approximation to . for k=1, we get B=c & A" w1 F3 Z. _, `% U+ a % v' a3 D( A8 U; [- W i G6 H+ t u ( N/ c; t2 M0 ~% @1 M9 o : |* d+ Q; N1 r8 }26.Integrating, (使结合)we get PVT=constant, where1 @+ E$ U! X4 o& Y
; f" Z. }( R. B$ J: [
公式 I5 J5 w& W. D# c: `% m Q' m4 \
& ^1 p% c) B! O4 E; w$ e! J. P& D
The main composition of the air is nitrogen and oxygen, so i=5 and r=1.4, so1 c5 g; d1 |% c5 c5 v4 F: H3 d
M( a& j0 \6 \" K) W: w
9 b, k, F3 f4 d( E; r2 W v: X ) z/ @- E$ z( k5 @& A; ?; L) V' L23.According to First Law of Thermodynamics, we get 9 E# O8 c1 i) ~5 t3 O9 s2 ~9 H5 D4 ^- U% w6 Q3 j
公式0 w; N# N3 U. g5 Q4 G( o# n6 [: w
8 p1 l! R2 P F* K5 O! K) F
Where ( ) . we also then have 4 m- {' X" A ]9 o8 `% P- l6 H/ k) H0 _8 z0 K! @! L' J
公式 ) f+ r z7 s0 q$ E- |6 F {5 W% U( X6 S3 R/ X0 a0 [' ?
Where P is the pressure of the gas and V is the volume. We put them into the Ideal Gas Internal Formula: 8 q9 R' ~2 k2 i( I: L2 w! t' x N ) b& ?" V v5 j2 P* ^" F# A公式 & O* f. E$ K4 A1 @. E' ?' L8 B" Z : z- D, z' f3 u6 z7 h; J; M) AWhere . m1 q) }+ E! r4 [6 C1 c# V' U ) C) ]: v- j/ X- D( m* \) H : [* U% W# f9 \1 o. |
+ B; f3 f& T. S0 i7 [对公式变形# d" I9 M7 u0 j0 W: t& G! \
13.Define A=nlw to be the ( )(定义); rearranging (1) produces (将公式变形得到) % Z- ^5 ^6 a# c/ D/ x) } 5 e4 E( `* T5 G5 t公式; S4 _7 I9 ]+ Y* x R
# K1 b1 o# T$ c& IWe maximize E for each layer, subject to the constraint (2). The calculations are easier if we minimize 1/E.(为了得到最大值,求他倒数的最小值) Neglecting constant factors (忽略常数), we minimize/ S' J8 g6 ?& W
1 ]! b/ _% y$ j& g, }2 {公式 3 h) g; ^1 F: r: [* g& `8 G5 \6 v- h8 i7 f
使服从约束条件: ]! Y& f2 A1 Y5 _, @5 z2 B) {
14.Subject to the constraint (使服从约束条件)' ^3 y; K8 p# u+ l) N4 d
9 W# \( h6 T: ^
公式8 V* E1 x/ s6 F3 U
! X1 D3 |; b6 T! B8 Y
Where B is constant defined in (2). However, as long as we are obeying this constraint, we can write (根据约束条件我们得到)4 M5 X+ M" N( T- g
% v4 \# w2 d: a$ i& R! ?2 \/ P7 x公式 $ J+ \' ~; E3 e" n7 f. Q% f ( O# C' p# m9 y: u1 _# |And thus f depends only on h , the function f is minimized at (求最小值) H; S' y1 E) d6 T8 O w2 k) i5 a6 g6 ~6 }7 m+ A4 D8 ?公式0 v/ w2 U# B+ m) H/ z9 t# U. d/ j
' ^2 I' ?$ M8 b2 y, v
At this value of h, the constraint reduces to6 O9 Q* O8 e7 w
. ^6 |+ e' r# ~' V% k1 _公式 & X8 h' i5 }: \! v) L3 j. I; p" p, u8 X/ |6 w, x) f
结果说明 ! n% L. Z) ~# P5 E" z1 t15.This implies(暗示) that the harmonic mean of l and w should be ) w! ^+ {3 F. V3 x" E/ m# v+ h+ {/ p
公式7 X4 K' v) a1 _8 p
& B4 D/ z) z2 d& q
So , in the optimal situation. ……… $ Q$ a, q* b9 v. u+ Q8 Y * A* i. @. f( C" A, p) p- T5.This value shows very little loss due to friction.(结果说明) The escape speed with friction is . K+ K, A6 v) E H7 B" k, P# G/ ^) q+ L$ b- i$ }9 `/ N% C* d
公式; x7 o' Z& A7 y/ n6 Y
6 r, B, ?; q+ D# |# G% v* X16. We use a similar process to find the position of the droplet, resulting in & _8 Y$ Z9 G0 a" i2 l v9 C / W8 ~2 o/ y( Q3 {- ~5 k公式" o& u3 y" Y' D$ H b8 Y
/ [: w' t: f/ }2 u, s8 D2 B& \
With t=0.0001 s, error from the approximation is virtually zero.5 b- }1 P: v6 {% D& C
. q# B4 p+ @# H6 F9 V) j* r
9 C _' q% z3 M4 P1 L, Q2 X * K9 U! x- [; W, T1 m) n/ F17.We calculated its trajectory(轨道) using ) e! R8 J& p, z, U4 \4 e5 k$ r7 {) r! f! x, [0 d, `/ Z
公式 ( C* n/ Q8 h7 n6 Y1 o1 t 3 E) m f, c! C3 m! v% u18.For that case, using the same expansion for e as above,- H& W0 `8 I& K% k, \
. K2 l& i6 o& u1 U0 P! X2 ]7 z公式# k$ z( e; X8 `0 n
) F; i/ P. Q& ^! ]9 A2 ?* L. P- o
19.Solving for t and equating it to the earlier expression for t, we get 3 O% O, f" N* F3 |6 `( Z: u. }1 i* T+ g7 N% q
公式+ n2 B+ O/ M/ W/ B5 w+ A# X3 n q. z
" H+ h* t& [0 ^, i+ d
20.Recalling that in this equality only n is a function of f, we substitute for n and solve for f. the result is: G3 i% n6 Y. _5 H# c& i- w+ r! b2 [
, |# o% c" y7 e, T x/ ?( T
公式 ! K, ]! _+ D0 W0 v' ^ 5 h. C* Y1 B1 x- ~" }As v=…, this equation becomes singular (单数的). 9 ~4 P2 ~6 {7 _* o( s' h- U) E, Y
" I5 q1 ~/ b! [: G, R1 R" i6 d# N; _* s8 f+ N j. W; \6 O
由语句得到公式2 D- p% _* E- Z4 X0 Y1 ^
21.The revenue generated by the flight is # r7 Y0 d8 V* N6 E- ?* M/ o6 r1 o3 Q
公式5 ~% R' L1 v% S: s( m) Q5 |. F3 A; a9 \: y
! F' T# X& z% D. ?% C! S , z' ^* ]5 v6 o7 T' L/ X# j. M" m2 G3 T! ^1 X& H/ {) r
24.Then we have 2 i- R( k9 z" S5 O" @ B1 S , o9 n7 c9 L' e. X2 D/ e0 h% Z6 F公式 % o" ^2 |* W; c* \4 o f7 f6 L & ]7 Z" q8 R& Y8 hWe differentiate the ideal-gas state equation& }6 }! w5 A$ e8 _) C: w( q
1 ?* @* h' _- I/ ? D6 a7 C- N2 D
公式6 O- M, w0 T! k0 X; c! q* a
3 Z0 ?( }" u F" CGetting & J+ F* Q: Z, O. e/ W$ }' |" d, J) W6 g# O2 r3 s* V7 m* R
公式 2 i: t. k& P4 r/ f 3 e9 D2 S5 l* n* d! y# r; D) ]. ^25.We eliminate dT from the last two equations to get (排除因素得到)( F2 c! }1 h7 E8 x+ e( H
; `: P: M# d* t% I$ F
公式$ P7 H/ X3 x. l
# O: t, n* J- F/ k( {2 {+ P
6 u; T6 d8 f; P. g( D
- C0 o, e# `0 w( G
22.We fist examine the path that the motorcycle follows. Taking the air resistance into account, we get two differential equations 4 b% s' [5 v- R: ~6 ]3 A1 ` 0 Q7 g9 W! e9 b: k公式! Y. ?" W6 G* m0 ^2 T: a
6 |7 ~; v, W) H2 \Where P is the relative pressure. We must first find the speed v1 of water at our source: (找初值) 5 {2 e% ^; t, P% g2 Y7 Y7 d : T. n& h6 Y% ]9 y; @* n公式 " n8 e3 D0 b& D- f5 o4 S7 A( I———————————————— & ~2 E, [0 x# u: X# M版权声明:本文为CSDN博主「闪闪亮亮」的原创文章。0 B# a7 ?; f1 L$ }* D4 t
原文链接:https://blog.csdn.net/u011692048/article/details/77474386 7 [% h# Q) x4 q6 c2 `8 H) @# t3 ]. Z) Y4 B