由假设得到公式 " {8 e5 W6 ~+ j# \, O1.We assume laminar flow and use Bernoulli's equation:(由假设得到的公式)* Z0 U: t R# |, I1 e) |2 b
; Z/ k+ y7 h8 T8 w4 ?0 ?
公式: ^# S- C, e5 E
# W! h5 x& _% UWhere % |+ i7 y! d2 {5 w# d) G0 |% F0 i4 K" g; ^* X G' n& L2 j
符号解释 9 Q4 B6 S. c7 v( a$ S/ T' t " _# L3 C5 ?$ G8 C- P" P! ~According to the assumptions, at every junction we have (由于假设)6 ^5 d1 E/ x9 m' h) j3 O
- d) ^2 X8 [, T& Q公式# t2 i: ^8 t2 a+ d+ u( L
) S' j* ^2 ~- y/ r% I2 A2 r6 Z由原因得到公式 ) ]8 |% l7 n- V: o* S' g2.Because our field is flat, we have公式, so the height of our source relative to our sprinklers does not affect the exit speed v2 (由原因得到的公式);. R! Z z/ h# g. [9 m
( U" f$ `( f6 n8 K
公式 ]. [& y4 W1 l; q, x
; a7 I Y! W' R6 D" KSince the fluid is incompressible(由于液体是不可压缩的), we have 1 b; R4 ~- _/ C5 f6 g ' s& K2 f" [. P4 i6 J! N Z公式 ( ~" \* _; _, Q9 s/ U4 U4 h7 W4 K: _2 I+ w6 E; w
Where- q; }) m0 N$ f
7 F. Z* U$ k% d5 h2 T9 _公式 2 |6 s/ Z/ C0 m. ] Z2 ^$ v8 x$ c& c4 w6 @. i, o# Q X( M
用原来的公式推出公式 ! K6 A% [& D( S+ {. X$ r& j/ T3.Plugging v1 into the equation for v2 ,we obtain (将公式1代入公式2中得到)$ y) J3 \* l: S& J! ?" G
- U+ I6 b# X& e8 M. ~7 f# _
公式/ e; W; Q7 F g1 u
3 W/ \* f2 U9 D. w7 R11.Putting these together(把公式放在一起), because of the law of conservation of energy, yields: e- A6 q. k9 `$ s! q ' R- K* v, v+ |5 k+ u- X! K公式4 V' I: F) A- [
8 E% V) ~; }' D8 n
12.Therefore, from (2),(3),(5), we have the ith junction(由前几个公式得)# p6 V1 e6 U% u, e, i' w
7 H+ N' Z B9 W9 i+ B; D% T* R公式 : {0 p8 t7 J' d/ r9 Q6 ?, a; h4 X- G" |8 U5 e% Q6 ?7 G
Putting (1)-(5) together, we can obtain pup at every junction . in fact, at the last junction, we have' b( V1 [. @% @
; b7 o* b6 _. [; F% ]公式7 R8 ~' j5 g/ c# |
" d7 q/ f. n( aPutting these into (1) ,we get(把这些公式代入1中) " d! T# S8 F3 g& I; i4 g4 n) c: Z7 o( ]! ~' t
公式 h! Z0 |! t& {9 z0 [% h% f- r , _, J$ g! X1 v3 f1 ]8 I! k( UWhich means that the 8 Q0 K: i9 J4 S% ~) _( d( ?% n ! N7 b( [% I2 a. ~Commonly, h is about 5 Z) C4 ? z7 g4 b9 M 0 d+ a' X/ j8 z4 BFrom these equations, (从这个公式中我们知道)we know that ……… " w1 [, e! p8 S4 h$ q% l1 l9 F/ }5 [/ l! R
0 @% z3 R# X' y/ E
" F1 V7 J O6 p& f5 |, G引出约束条件/ X! Z- T7 ?5 S4 @* D9 h
4.Using pressure and discharge data from Rain Bird 结果,7 d$ v/ a+ E$ c' W4 t8 R
! S. E) `0 g s8 H5 D; x
We find the attenuation factor (得到衰减因子,常数,系数) to be + m3 e! O0 Z+ f% I$ x- u$ V; b( ]1 |; ~3 ]& [
公式 * U. x4 |1 B; R. j/ ^# _, s) {; C% D7 ^5 d/ B/ J# [; D5 d
计算结果 % D3 }! e+ t& |( _6.To find the new pressure ,we use the ( 0 0),which states that the volume of water flowing in equals the volume of water flowing out : (为了找到新值,我们用什么方程)' T6 @4 Y0 T9 c m+ l2 {- e, b0 d
& p* v* C, y, C; m/ {2 J
公式 [6 E) E* n4 `9 n& M* `4 e% D
, t% b& S s! ?' hWhere 5 L7 A- M, i4 e! _0 A2 V / F& c" n$ e: E# S( w() is ;; 1 l2 u, K4 W$ J' p/ J6 t. G- ]: S B# @- a* H! b/ x" ?' i
7.Solving for VN we obtain (公式的解)' ]& v" R& |4 T
& V* {: t" ~9 k4 s! { K公式 Q. x! K. K4 L1 X) s0 n/ w( S- c& m5 ?- \% R
Where n is the ….. B. @2 d; V0 n" ?' w8 A
* k- b+ H* |, H8 G! G$ M% G! u/ A
* I- z: L$ b* k0 \: j: p7 _ 8 o' k% a2 F; v" F, N% N: q' s' I' f3 n8.We have the following differential equations for speeds in the x- and y- directions: + {5 O7 L$ f- e1 ~0 }/ C }! N- J6 y5 X/ Z; F
公式( e8 v; b& U, x& [/ }# e
6 a8 `. w! U6 N3 r
Whose solutions are (解) - T$ _1 l; Z6 K. Z( V! z8 I6 J( `) N d p, T2 P1 K3 z. I/ u
公式 ! |- V; s( ?( z+ t$ T' t1 x/ C1 j7 @* \* w* x. [
9.We use the following initial conditions ( 使用初值 ) to determine the drag constant: " y b+ N8 L5 d/ @( V: P. b8 o/ M/ b- g+ M5 B- m3 X% {
公式2 q; X1 W4 h8 i# }' y
5 i W1 O' C! P, |* }
根据原有公式 - @, W- D2 [3 y0 K% L% c- @10.We apply the law of conservation of energy(根据能量守恒定律). The work done by the forces is % \7 Y; _" M; n. F8 F4 q) U7 ~; n, b1 F/ t4 v$ M: w* y+ X- e# q
公式 + u' S5 N/ ^; M+ Y4 J! ]3 J( c& _8 t. o) N
The decrease in potential energy is (势能的减少) % S9 P3 j* `1 _ ) w) K+ o5 j$ n! P公式+ b6 U( ^9 Z1 Z9 l: j
1 D. W% J5 a- X. L0 t! m- lThe increase in kinetic energy is (动能的增加)- r( c& }4 F3 D/ K$ V( a$ o" o+ e+ [% m
. t- o, g9 |1 @* G公式 * L: l9 x+ f# P) z3 ?7 x% Z * l& v, g( ^1 _- j3 ~6 tDrug acts directly against velocity, so the acceleration vector from drag can be found Newton's law F=ma as : (牛顿第二定律) 1 G" W) ~) d8 V! a # F( o8 f! y7 O2 V8 JWhere a is the acceleration vector and m is mass 0 H3 M; D' [* r/ f/ B# [ 6 J' H0 s' i0 t9 H" n. K 3 ? C/ {7 k7 Q" _! j # U% x5 R6 H/ q/ \% c' j; gUsing the Newton's Second Law, we have that F/m=a and3 W1 k6 q. n5 x, G! c! ?
) p- _- m9 a+ ]# A3 r公式 % w0 b* W2 w" L) P4 o+ u$ f, G! w6 i: Z3 \
So that6 J( [) V, \7 h. G+ t7 P
$ F! r5 n" _1 ~- S$ d" D* A( ~
公式 6 Q% L- \1 r. ? Z" S" S) R& I9 \6 I- P' e
Setting the two expressions for t1/t2 equal and cross-multiplying gives . d5 A5 C, N& n1 N! }0 E' k ^- G4 F' m3 T2 M6 o- |
公式 # L* O+ t3 y: a3 c; |* V3 [/ C * n% F. C+ U) f2 _$ m- L$ W% [0 H2 ?9 O22.We approximate the binomial distribution of contenders with a normal distribution: f e& q- ` m3 F% Y. I 5 k& _& A N' w/ @1 |7 [公式 9 t" _ g. j8 D0 ~0 @' s f D T2 C4 c4 P0 v+ J7 z1 b
Where x is the cumulative distribution function of the standard normal distribution. Clearing denominators and solving the resulting quadratic in B gives 8 A6 w' U6 e" g* j! g1 P4 E' @. c
公式 8 X3 j1 m. H5 g8 g' K% ~ ( N* |& T. p3 q5 S9 l2 w8 A* D7 ?0 yAs an analytic approximation to . for k=1, we get B=c # J* b/ Z6 X' @: I( {1 l. q) J: b2 \% _$ B& ~' f* \
: x% v% P/ B- _& p' X$ ?" X
. v" f/ W& R$ T+ K4 _3 Z
26.Integrating, (使结合)we get PVT=constant, where ; n; _- |3 d8 b9 y : P! J4 X; m" k8 o: j1 D( d公式' W$ S! S* G7 }) J4 @
* q% ?$ P/ q/ [1 e. X8 |( `The main composition of the air is nitrogen and oxygen, so i=5 and r=1.4, so - m- J0 O& D: j$ p& |+ t, O" |2 a 6 s2 u/ \$ `% k B . M# {! m {9 ]3 a( z7 N4 b. ^0 E7 O# V; E
23.According to First Law of Thermodynamics, we get5 a$ m1 G% d: o" E% I8 m$ u
- t3 Z. u; ?9 v/ K' fWhere ( ) . we also then have / r1 ~( G! l3 Q5 p A: X/ s- x! O7 {+ |+ Y9 V
公式% }5 Y+ {. I5 [6 e( z, G
& t4 m: G, s) nWhere P is the pressure of the gas and V is the volume. We put them into the Ideal Gas Internal Formula:8 X& v' y. F$ z9 G* |1 n
6 M. z9 K M, s, m% O
公式 7 M& w9 U+ r/ `$ n/ \9 f 8 g3 U$ z0 v: b" s+ `Where: D3 W) O! Z4 I! G. Z& W1 Z: W
- p0 f" U* U" y- m* }4 p8 Y
4 f/ o8 u0 @6 W1 A/ E3 m6 l3 I5 v1 |+ D& f4 G6 `# m9 B
对公式变形 9 I# i2 C* y4 l# Q1 P/ [! d& g13.Define A=nlw to be the ( )(定义); rearranging (1) produces (将公式变形得到) 4 D: }+ A9 l; y$ T- g2 @ 6 ~9 ?, V# i9 k公式 8 [% a) H& i6 B. t . N( x o' b3 BWe maximize E for each layer, subject to the constraint (2). The calculations are easier if we minimize 1/E.(为了得到最大值,求他倒数的最小值) Neglecting constant factors (忽略常数), we minimize- c `7 B' [9 b5 [3 L( d& O
# X# A' |- U6 u" s5 H) I" [公式 x7 I# ^$ Z3 o' u! v6 C. R
( a( v! l: Y- g2 d, K使服从约束条件 8 A. k1 e! k% z14.Subject to the constraint (使服从约束条件), y( A) g; j) _' ~ K+ C
3 A0 ?/ x' U' G& D0 y! `0 [7 i" v2 s公式- e. y; |1 n% p$ x; b' B
: P ?( T" f: Z& ^Where B is constant defined in (2). However, as long as we are obeying this constraint, we can write (根据约束条件我们得到)& }0 e% E9 _+ q7 j( G
$ C# Y4 n0 ?/ Y5 V. M
公式# p8 V. W0 W( J0 W
6 l: r' ~1 @5 |) Y8 |" Z! hAnd thus f depends only on h , the function f is minimized at (求最小值) ' M( C2 ?5 W% r, e8 Z4 L ! q1 E* ?& M$ l6 M- m W3 c公式 o+ q* ?# x2 v: ^9 R
8 A7 O8 N. z' k5 kAt this value of h, the constraint reduces to , I$ A' ?- o/ h8 m/ {( ?" R7 ~3 B$ L8 S- _3 x1 P
公式0 C0 I8 j: M0 Q. V6 ^
t. H1 P% X/ ^9 w+ r* `5 Z, K结果说明 ' L+ Q9 c" R- e- C15.This implies(暗示) that the harmonic mean of l and w should be : @( M4 y2 `, D2 f9 c8 Z* B1 V' ]2 Q0 n1 C+ ^" |, x' P( _4 b
公式2 o, Z, B) Y1 F5 q& E" f$ C" t0 x
" o/ i; x/ H' k! Z
So , in the optimal situation. ………4 a _# n6 m% @7 v
; ~$ [: y4 O/ J, ?8 ~+ }5.This value shows very little loss due to friction.(结果说明) The escape speed with friction is . a* i( ~% B: B& ?# ^2 G" J4 Z" P6 ]
公式6 W5 a+ B: \) `/ a3 b; p
- x" m5 N% B q16. We use a similar process to find the position of the droplet, resulting in5 {% N3 G( b. A- ?& a. X0 |8 v
/ }% ~6 S( V( s- ?, a0 m$ O
公式 ) B- F7 {7 J/ j& o( P2 h) |$ e4 X5 h8 b. O
With t=0.0001 s, error from the approximation is virtually zero.6 W" C& r: B/ Z9 u! y
% M1 d3 O1 U& }5 G ) S0 O2 U% l- z t/ T; y- }
5 E4 L: b! ~: K6 X
17.We calculated its trajectory(轨道) using / s8 p: n- u: ^/ c2 O ' C. H, G% w) H公式8 K, O8 M4 {; D$ f! q6 N L! Q! l
8 q# q/ |5 b' E- h1 i5 j: A18.For that case, using the same expansion for e as above,; b- m% w7 x: N8 v5 t- W+ K
" u' [- R6 V' p% R& c
公式. e2 Y1 L3 d/ s- u2 P
' g1 T8 Y* ^4 u: T
19.Solving for t and equating it to the earlier expression for t, we get / k1 o( {% L9 _% _5 w# {0 H) H/ S$ q$ b9 R/ y: T. s$ F& P1 e
公式4 x! \6 w; E9 J* C
* ]6 [, Q$ j5 B* N3 B1 d20.Recalling that in this equality only n is a function of f, we substitute for n and solve for f. the result is; N' i/ ~$ T# h( k
. U4 k: ~- s9 {公式 3 q4 c* M5 ^" J O1 g( F6 P+ @) X. g- N& q4 t! `* `
As v=…, this equation becomes singular (单数的). & B( i9 O2 b( _$ X# N+ Q0 g( W" D5 H. W5 G- g) i. m+ }
$ w( m3 J% M$ B0 x ]& |+ V 9 @) b# F& }( @# u* n! I由语句得到公式8 B9 q' c4 Q, F- n5 G8 V# l
21.The revenue generated by the flight is + h. V4 x" ]/ g" |5 j5 \2 X/ C; F5 k7 O% a5 v
公式 4 e2 g4 t0 p8 a0 M. O8 {. U+ y. f5 k/ O
) `: W: c6 n, m% N$ \' j# ` 8 o) \ ^. O' A5 ~! \5 @, x24.Then we have & @2 u3 |& c6 v% o / X1 n* m) y: x公式+ n/ \6 r z# D& D+ \7 ~$ r
+ f6 b, e; i1 zWe differentiate the ideal-gas state equation7 d! d8 ]$ S/ U# |
9 f7 w+ d! _( V7 ^' D
公式 " e2 Y& t; |; c " ? _- _# z6 u7 e0 FGetting 8 u0 R" j- U9 K1 X+ F% ?& j3 {3 I: e- `8 i: J! M1 ^ j. i
公式 $ h6 r" U7 V( \# q9 S8 }3 [" Z4 Z, Y) u9 Q0 J+ h
25.We eliminate dT from the last two equations to get (排除因素得到), F- P# F; M# D$ `
% g8 a1 v% K( z& v0 [7 `
公式 4 ^! q0 V+ b2 Q& c7 n7 k9 Q1 F 3 l+ [$ D$ b, ~7 z% B1 Z% R ! y5 W# [! {! N. _1 _9 N# \
7 J+ {/ f" V6 k/ J# w
22.We fist examine the path that the motorcycle follows. Taking the air resistance into account, we get two differential equations# m1 I( u* k' X0 L
2 Y n$ \- F6 O; E. H) }1 t
公式 7 Z5 E3 b- a4 g* {* C5 i& V- @4 @; J' g. v! e2 l, f2 e
Where P is the relative pressure. We must first find the speed v1 of water at our source: (找初值). l0 Y. v+ C6 A
2 B) z$ W0 g6 ~" E公式 7 i, U+ J9 m% o+ N# K———————————————— ( i) i" A/ O% i, Z版权声明:本文为CSDN博主「闪闪亮亮」的原创文章。9 l- S1 _+ F9 f5 a; L, X2 ]$ F
原文链接:https://blog.csdn.net/u011692048/article/details/774743868 U! j1 Z" ?. k, g) E/ d