QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2807|回复: 0
打印 上一主题 下一主题

风控赛文献专题:5 个一级指标及 24 个二级指标构成的个人信用评 估指标体系

[复制链接]
字体大小: 正常 放大
普大帝        

1195

主题

34

听众

5万

积分

  • TA的每日心情
    开心
    2025-8-8 15:41
  • 签到天数: 617 天

    [LV.9]以坛为家II

    网络挑战赛参赛者

    自我介绍
    我是普大帝,拼搏奋进,一往无前。
    跳转到指定楼层
    1#
    发表于 2022-7-2 14:55 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta

    鉴于此,本文从个人信用评估指标与模型两个方面入手展开研究。首先,本文在相关理论的基础上,总结出构建个人信用评估指标体系的五大原则,依据国内外个人信用评估标准,对比分析了我国商业银行现行个人信用评估指标与发达国家、P2P 借贷平台的之间存在的差异,取长补短,构建了由自然情况、家庭情况、职业情况、银行关系、信用情况 5个一级指标及 24 个二级指标构成的个人信用评估指标体系。该指标体系涉及指标全面,能在一定程度上减少商业银行与贷款申请人之间存在的信息不对称现象,从而达到全面评估申请人信用风险与违约概率的效果,缓解逆向选择与道德风险带来的损失。

    其次,本文试图探索更有效率的个人信用评估分类模型。近年来,集成学习算法被证实比传统单分类器拥有更好的分类性能与泛化能力,且在分类问题上有良好的表现。因此,本文选用了最新的集成学习算法——XGBoost 集成分类算法作为本文的实证方法,通过贝叶斯优化算法对其参数进行优化,构建了XGBoost-BOA 集成分类模型。采用德国、英国及人人贷信用数据集作为实证样本,
    4 l* H( k7 t" W2 u7 o5 ]9 _6 a8 q检验 XGBoost-BOA 集成分类模型的分类性能,并与其他常见的 8 种分类模型进行对比。实证结果表明,集成学习算法的分类准确率普遍比单分类器分类性能高;本文提出的 XGBoost-BOA 集成分类模型在这三个信用数据集的个人信用分类问题上具有良好的表现,且比其他分类模型分类精度更高。本文对个人信用评估指标的完善与个人信用评估方法的改进,有望帮助商业银行量化分析申请人的个人信用,更高效准确地处理贷款审批,有效地规避信用风险,降低损失,也有利于全民信用意识的提升,促进我国信用社会的建设与发展。

    本文有两点创新之处。第一,在参考国内外个人信用评估标准及相关学者研究的基础上,取其精华,在自然情况指标中新增健康状况指标,在我国欠缺的信用情况指标中新增现有信贷数目、信贷用途、信贷金额、信贷期限、个人司法记录、其他失信记录 6 个指标,丰富并完善了我国商业银行个人信用评估指标体系。第二,作了 XGBoost 集成学习算法在个人信用评估领域的应用研究,并对其进行贝叶斯参数优化,从而构建了 XGBoost-BOA 集成分类模型,通过对比研究证实该模型在德国、英国、人人贷样本上具有较其他分类模型更优的分类性能。第三,本文利用 XGBoost 算法内置特征重要性柱状图绘制功能对各国数据集的特征变量重要性进行分析,不仅能有效提高模型的可解释性,而且能够帮助商业银行快速识别出对个人信用影响较大的特征指标,对指标选择与权重设置也有一定的借鉴意义。

    关键词:个人信用评估指标;个人信用评估方法;集成学习算法;XGBoost;特征重要性, E% T- Z/ N' ^' V5 v. @4 R


    7 y1 R- k  s- i+ D2 N/ T. o5 e0 [" Z6 g, X' @% e! o
    6 D2 F  z; f& p& c9 N. I7 J

    + S3 S; {( z( Y! X5 |
    ) [' n$ q: T% x1 V+ H
    ! G  a) J; J# C1 m/ [# S- k0 |& a  Q6 R( ]8 Q8 o

    5 个一级指标及 24 个二级指标构成的风控模型.zip

    1.74 MB, 下载次数: 6, 下载积分: 体力 -2 点

    售价: 5 点体力  [记录]

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-10 23:06 , Processed in 0.405491 second(s), 55 queries .

    回顶部