QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2729|回复: 0
打印 上一主题 下一主题

python TF-IDF算法实现文本关键词提取

[复制链接]
字体大小: 正常 放大
杨利霞        

5273

主题

82

听众

17万

积分

  • TA的每日心情
    开心
    2021-8-11 17:59
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    网络挑战赛参赛者

    网络挑战赛参赛者

    自我介绍
    本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。

    群组2018美赛大象算法课程

    群组2018美赛护航培训课程

    群组2019年 数学中国站长建

    群组2019年数据分析师课程

    群组2018年大象老师国赛优

    跳转到指定楼层
    1#
    发表于 2023-4-20 11:35 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    python TF-IDF算法实现文本关键词提取
    : b6 D  W2 f6 M) b  O7 K
    & ?3 U+ w0 c6 d$ A4 nTF(Term Frequency)词频,在文章中出现次数最多的词,然而文章中出现次数较多的词并不一定就是关键词,比如常见的对文章本身并没有多大意义的停用词。所以我们需要一个重要性调整系数来衡量一个词是不是常见词。该权重为IDF(Inverse Document Frequency)逆文档频率,它的大小与一个词的常见程度成反比。在我们得到词频(TF)和逆文档频率(IDF)以后,将两个值相乘,即可得到一个词的TF-IDF值,某个词对文章的重要性越高,其TF-IDF值就越大,所以排在最前面的几个词就是文章的关键词。TF-IDF算法的优点是简单快速,结果比较符合实际情况,但是单纯以“词频”衡量一个. w* \2 U) E4 v7 c6 t

    / b% Y# z; F( o! S8 G3 \$ w

    ython-167511.pdf

    52.92 KB, 下载次数: 2, 下载积分: 体力 -2 点

    售价: 2 点体力  [记录]

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-5 07:28 , Processed in 0.882539 second(s), 54 queries .

    回顶部