0-1背包问题是一种经典的组合优化问题,其目标是在给定的一组物品中,选择一些物品放入容量有限的背包中,使得所选物品的总价值最大化,同时保持背包不超过其容量限制。 具体来说,0-1背包问题中每个物品有两个选择:要么选择将物品放入背包中,要么选择不放入背包中,不能选择部分放入。每个物品有两个属性:价值和重量。背包有一个容量限制,即可以容纳的总重量。 问题的数学描述如下:
: J N5 z& U4 y4 G/ G! C: q给定n个物品,每个物品i有一个价值vi和重量wi,背包的容量为W。要找到一个选择向量x=(x1, x2, …, xn),其中xi表示是否选择将物品i放入背包中(xi=1表示选择放入,xi=0表示不放入),使得目标函数; Z0 a$ L7 k' G. a4 b* K% A! z
∑(vi * xi)最大化(0 ≤ i ≤ n)。 P( a8 _! T4 r! f' L
同时需要满足约束条件:: T) P% i; ]4 L+ ]) i: R
∑(wi * xi) ≤ W。 . S- ?% Y& `3 T# U6 P
在文章中物体的重量和价值分别如下:: g* m2 f7 D: G" @. j( {% T
重量(d):[2; 5; 18; 3; 2; 5; 10; 4; 11; 7; 14; 6]价值(k):[-5; -10; -13; -4; -3; -11; -13; -10; -8; -16; -7; -4] 其中,重量和价值的对应关系是根据物品的顺序确定的,即第一个物品的重量为2,价值为-5。依此类推,最后一个物品的重量为6,价值为-4。
* z) i' Y& _* z+ J该背包问题的背包容量限制为46" h( p& ^& L5 L3 o
* q: ?' a. \8 i5 y7 r7 M1 ^下面是对代码的解读:2 G7 P1 Y* |; P8 O. U. U
首先进行数据初始化,包括物品的价值k和重量d,背包的限制条件restriction,以及物品数量num。 定义模拟退火需要用到的变量,包括当前解对应的目标函数值E_current,最优解的目标函数值E_best,当前解sol_current,最优解sol_best等。 设置模拟退火算法的参数,包括初始温度t0,最终温度tf,温度衰减系数a。 进行模拟退火的迭代过程。在每个温度下,进行一定次数的迭代(这里是100次),每次迭代生成一个新解sol_new。 对新解进行检查是否满足约束条件。如果不满足,则根据一定规则进行调整,使得解满足约束条件。 计算新解的目标函数值E_new,即背包中物品的总价值。 根据模拟退火的策略,更新当前解和最优解。如果新解的目标函数值更优,则更新当前解和最优解;否则,根据一定概率接受差解,或者保持当前解不变。 降低温度t,继续下一轮迭代,直到达到最终温度tf。 输出得到的最优解sol_best,物品总价值val以及背包中物品的重量(sol_best * d)。 ! N& y' i- R2 T" X& V, d
对于该问题的代码如下:
3 }6 p6 f' t! F+ J* K" R2 a9 K
! A+ M; S5 E9 L; Q! h
6 N1 i, d! D2 B6 F$ y) j& u4 Z
% r6 z9 ?, c1 X8 C' P% _- Z# o* ~8 o2 z9 w1 ^# A
|