QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1760|回复: 0
打印 上一主题 下一主题

BP网络构建中所需要的函数,以及示例总结

[复制链接]
字体大小: 正常 放大

1175

主题

4

听众

2838

积分

该用户从未签到

跳转到指定楼层
1#
发表于 2023-11-9 11:28 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
BP网络的训练函数
[size=10.5000pt]训练方法
[size=10.5000pt]训练函数
[size=10.5000pt]梯度下降法[size=10.5000pt]
[size=10.5000pt]traingd[size=10.5000pt]
[size=10.5000pt]有动量的梯度下降法
[size=10.5000pt]traingdm
[size=10.5000pt]自适应lr梯度下降法
[size=10.5000pt]traingda
[size=10.5000pt]自适应lr动量梯度下降法
[size=10.5000pt]traingdx
[size=10.5000pt]弹性梯度下降法
[size=10.5000pt]trainrp
[size=10.5000pt]Fletcher-Reeves共轭梯度法
traincgf
[size=10.5000pt]Ploak-Ribiere共轭梯度法
traincg[size=10.5000pt]p
[size=10.5000pt]Powell-Beale共轭梯度法
traincg[size=10.5000pt]b
[size=10.5000pt]量化共轭梯度法
[size=10.5000pt]trainscg
[size=10.5000pt]拟牛顿算法
[size=10.5000pt]trainbfg
[size=10.5000pt]一步正割算法
[size=10.5000pt]trainoss
[size=10.5000pt]Levenberg-Marquardt
[size=10.5000pt]trainlm
BP网络训练参数
训练参数
[size=10.5000pt]参数介绍
[size=10.5000pt]训练函数
net.trainParam.epochs
[size=10.5000pt]最大训练次数(缺省为10[size=10.5000pt]
[size=10.5000pt]traingdtraingdmtraingdatraingdxtrainrptraincgf[size=10.5000pt]、traincg[size=10.5000pt]ptraincg[size=10.5000pt]btrainscgtrainbfgtrainosstrainlm
net.trainParam.goal
[size=10.5000pt]训练要求精度(缺省为0[size=10.5000pt]
[size=10.5000pt]traingdtraingdmtraingdatraingdxtrainrptraincgf[size=10.5000pt]、traincg[size=10.5000pt]ptraincg[size=10.5000pt]btrainscgtrainbfgtrainosstrainlm
net.trainParam.lr
[size=10.5000pt]学习率(缺省为0.01[size=10.5000pt]
[size=10.5000pt]traingdtraingdmtraingdatraingdxtrainrptraincgf[size=10.5000pt]、traincg[size=10.5000pt]ptraincg[size=10.5000pt]btrainscgtrainbfgtrainosstrainlm
net.trainParam.max_fail
[size=10.5000pt]最大失败次数(缺省为5
[size=10.5000pt]traingdtraingdmtraingdatraingdxtrainrptraincgf[size=10.5000pt]、traincg[size=10.5000pt]ptraincg[size=10.5000pt]btrainscgtrainbfgtrainosstrainlm
net.trainParam.min_grad
[size=10.5000pt]最小梯度要求(缺省为1e-10
[size=10.5000pt]traingdtraingdmtraingdatraingdxtrainrptraincgf[size=10.5000pt]、traincg[size=10.5000pt]ptraincg[size=10.5000pt]btrainscgtrainbfgtrainosstrainlm
net.trainParam.show
[size=10.5000pt]显示训练迭代过程(NaN表示不显示,缺省为25
[size=10.5000pt]traingdtraingdmtraingdatraingdxtrainrptraincgf[size=10.5000pt]、traincg[size=10.5000pt]ptraincg[size=10.5000pt]btrainscgtrainbfgtrainosstrainlm
net.trainParam.time
[size=10.5000pt]最大训练时间(缺省为inf
[size=10.5000pt]traingdtraingdmtraingdatraingdxtrainrptraincgf[size=10.5000pt]、traincg[size=10.5000pt]ptraincg[size=10.5000pt]btrainscgtrainbfgtrainosstrainlm
net.trainParam.mc
[size=10.5000pt]动量因子(缺省0.9
[size=10.5000pt]traingdmtraingdx
net.trainParam.lr_inc
[size=10.5000pt]学习率lr增长比(缺省为1.05
[size=10.5000pt]traingdatraingdx
net.trainParam.lr_dec
[size=10.5000pt]学习率lr下降比(缺省为0.7
[size=10.5000pt]traingdatraingdx
net.trainParam.max_perf_inc
[size=10.5000pt]表现函数增加最大比(缺省为1.04
traingda[size=10.5000pt]traingdx
net.trainParam.delt_inc
[size=10.5000pt]权值变化增加量(缺省为1.2
[size=10.5000pt]trainrp
net.trainParam.delt_dec
[size=10.5000pt]权值变化减小量(缺省为0.5
[size=10.5000pt]trainrp
net.trainParam.delt0
[size=10.5000pt]初始权值变化(缺省为0.07
[size=10.5000pt]trainrp
net.trainParam.deltamax
[size=10.5000pt]权值变化最大值(缺省为50.0
[size=10.5000pt]trainrp
net.trainParam.searchFcn
[size=10.5000pt]一维线性搜索方法(缺省为srchcha
traincgf[size=10.5000pt]、traincg[size=10.5000pt]ptraincg[size=10.5000pt]btrainbfgtrainoss
net.trainParam.sigma
[size=10.5000pt]因为二次求导对权值调整的影响参数(缺省值5.0e-5
[size=10.5000pt]trainscg
net.trainParam.lambda
[size=10.5000pt]Hessian矩阵不确定性调节参数(缺省为5.0e-7
[size=10.5000pt]trainscg
net.trainParam.men_reduc
[size=10.5000pt]控制计算机内存/速度的参量,内存较大设为1,否则设为2(缺省为1
[size=10.5000pt]trainlm
net.trainParam.mu
file:///C:/Users/312/AppData/Local/Temp/ksohtml28144/wps11.png[size=10.5000pt]的初始值(缺省为0.001
[size=10.5000pt]trainlm
net.trainParam.mu_dec
file:///C:/Users/312/AppData/Local/Temp/ksohtml28144/wps12.png[size=10.5000pt]的减小率(缺省为0.1
[size=10.5000pt]trainlm
net.trainParam.mu_inc
file:///C:/Users/312/AppData/Local/Temp/ksohtml28144/wps13.png[size=10.5000pt]的增长率(缺省为10
[size=10.5000pt]trainlm
net.trainParam.mu_max
file:///C:/Users/312/AppData/Local/Temp/ksohtml28144/wps14.png[size=10.5000pt]的最大值(缺省为1e10
[size=10.5000pt]trainlm
7 b1 @% c: W6 C1 X3 n( Y* E

' x0 t+ y- r" O7 J

BP神经网络matlab实例(简单而经典).doc

168 KB, 下载次数: 0, 下载积分: 体力 -2 点

售价: 2 点体力  [记录]  [购买]

zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-7-27 05:51 , Processed in 0.412445 second(s), 54 queries .

回顶部