QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1831|回复: 0
打印 上一主题 下一主题

基于小波神经网络的短时交通流量时间序列预测

[复制链接]
字体大小: 正常 放大

1175

主题

4

听众

2823

积分

该用户从未签到

跳转到指定楼层
1#
发表于 2024-5-24 11:25 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
基于小波神经网络的短时交通流量时间序列预测涉及到以下几个主要知识点:, n3 {8 i( R6 d
$ r6 d! B) r" O0 Y" t$ U( `
1. **小波变换**:小波变换是一种信号处理技术,可以将信号分解成不同频率成分的波形。在交通流量时间序列预测中,小波变换可以用于分析交通流量数据的频域特征,帮助提取数据的周期性和趋势信息。; h! [. S) k6 R/ l" b

0 I- J9 B5 e+ b  U2 U2. **神经网络**:神经网络是一种模拟人脑神经系统的计算模型,在预测任务中常用于学习复杂的非线性关系。小波神经网络结合了小波变换和神经网络的优势,能够更好地处理时间序列数据的特征提取和预测。
$ L6 c3 X7 i# X0 Z9 T) j& q
( d1 Z# P; {! |3 e4 N3. **短时交通流量时间序列**:交通流量数据通常具有明显的周期性和趋势性,同时受到多种因素的影响。短时交通流量时间序列预测旨在通过历史数据来预测未来短时间段内的交通流量情况,有助于交通管理和规划。
0 I# u! N* |# `- m" Q
  |* J: M' C3 h% |, M3 x4. **特征提取**:小波神经网络可以通过小波变换来提取交通流量时间序列中的频域特征,帮助神经网络更好地学习数据的规律和趋势,提高预测准确性。
$ ?  e2 ?2 b) L! r2 Y6 S7 D7 E
' a, ^% F" u5 C) S* l5. **模型训练**:在小波神经网络中,需要对网络的结构和参数进行设计和调整,包括选择合适的小波基函数、神经网络结构、学习率等,通过训练数据来优化网络参数,使得网络能够更好地拟合历史数据。$ {, h% q" m- p' [
' S/ A7 x& N! s& j) f' Y1 W# [
6. **预测结果评估**:预测完成后,需要对预测结果进行评估,包括与实际观测值的对比、误差分析、预测准确度等。这有助于评估模型的预测性能,并根据需要进行进一步的调整和优化。5 W$ ]' S7 l. f! i

% D( z4 W# u/ f$ F. \4 }) k接下来为大家分享一篇实例. z0 X, [& F" H& Z! E# m3 Z

, d) ?7 k+ l: ~; G% e
* [+ a& ]+ X  l+ v7 r# T: p
4 l/ ^- w0 q% ?8 E% k

小波神经网络的时间序列短时交通流预测.rar

3.95 KB, 下载次数: 0, 下载积分: 体力 -2 点

售价: 2 点体力  [记录]  [购买]

zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-7-21 04:48 , Processed in 1.789336 second(s), 54 queries .

回顶部