- 在线时间
- 1 小时
- 最后登录
- 2018-5-2
- 注册时间
- 2006-10-17
- 听众数
- 1
- 收听数
- 0
- 能力
- 0 分
- 体力
- 64 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 20
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 4
- 主题
- 1
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   15.79% TA的每日心情 | 开心 2018-5-2 00:04 |
---|
签到天数: 1 天 [LV.1]初来乍到
|
本帖最后由 elim 于 2018-5-2 00:44 编辑 * \5 {) P8 F" X+ b) p E
- L5 p% \7 n$ _
从分析的角度看,\(0 < a_{n+1} = \ln(1+a_n) < a_n,\;\{a_n\}\)是正项递减数列, 其极限满足方程\(0\le A=\ln(1+A).\;\therefore\;\lim_{n\to\infty}a_n = 0\) f8 H( \' E; X/ G; o5 `# z ~
8 p' r& r7 L) }4 d" g% f: m
\(\lim_{n\to\infty} na_n = \lim_{n\to\infty}\frac{n}{a_n^{-1}}\overset{Stolz}{=}\lim_{n\to\infty}\frac{1}{a_{n+1}^{-1}-a_n^{-1}}=\lim_{n\to\infty}\frac{a_na_{n+1}}{a_n-a_{n+1}}=\lim_{x\to 0}\frac{x\ln(1+x)}{x-\ln(1+x)} = 2\)+ ~+ r9 S2 c( X; L A% @) J/ ~
( f# x6 O$ s' o! U) {
\(\lim_{n\to\infty}\frac{n-\frac{2}{a_n}}{\ln n} \overset{Stolz}{=} \lim_{n\to\infty}\frac{1-2(a_{n+1}^{-1}-a_n^{-1})}{\ln(1+\frac{1}{n})}=\lim_{n\to\infty}\frac{a_n/6 + O(a_n^2)}{\ln(1+\frac{1}{n})}=\lim_{n\to\infty}\frac{na_n}{\ln(1+\frac{1}{n})^n}=\frac{1}{3}\)
+ f/ I$ b* Y: j
' e+ V k2 T' `1 `) W: e. K; e\(\lim_{n\to\infty}\frac{n(na_n-2)}{\ln n} = \frac{2}{3}\)' Y: L5 b! ~, I& y( ^/ [# }
2 k6 V% {9 P' z2 |好了,现在试试编个程序算算对很大的\(n,\;\frac{n(na_n-2)}{\ln n}\)是否非常接近于 2/3?# r2 j) v; {) p; y7 c% ]
7 J' ?% U, f" g7 }. P5 p7 s' d! `# T4 O1 x2 a
|
|