2 ^$ y. E, \5 x; p/ \3 e: e- h
/ l, [# w9 M5 r# `" }
4、Python代码2 @9 n$ L7 p U& g% o
#-*- coding:utf-8 -*-0 p; {7 ^6 a1 x7 S
( J$ F" b; Q2 @ R/ V$ d5 Y! Simport random 8 U" ^ W7 t& [7 U0 \) k+ w0 Uimport math 9 j- w4 V" S C: @# c, Hfrom operator import itemgetter ! D+ Y6 y, v# l( N& L$ g4 v 0 C& q* p* M! F+ Y; ^class Gene:/ A; p d0 G8 l: ?
'''9 a0 o4 G7 {7 o& H! [! X
This is a class to represent individual(Gene) in GA algorithom6 k9 v. H2 |6 F) O( c
each object of this class have two attribute: data, size 5 _* C8 R. E2 D6 ] @9 d, @ '''' {5 O+ c" U B( N( D+ Z- ^
def __init__(self,**data): * ^" ^0 @+ X$ O6 _ self.__dict__.update(data) g. k6 \0 y- n: a) G. r6 o$ K$ g
self.size = len(data['data'])#length of gene1 M% v% _/ w2 K y1 W
) V1 n3 K" j. C c1 f3 ?8 \, q8 N9 T* r8 J: q2 H m! w5 H
class GA: % W1 R" J% Z: v( n$ e8 y '''( P& {( G1 o" j3 d9 t5 s, N9 o
This is a class of GA algorithm. 1 i1 y: w& n( s& t3 }
''' # M3 g% }; M# ]+ x' Y; { def __init__(self,parameter): 1 d& H! G; `7 @+ x* L2 w6 W '''7 c& Q' q @0 I/ A' N H/ p. Z
Initialize the pop of GA algorithom and evaluate the pop by computing its' fitness value . - v& M9 g9 R/ S- O The data structure of pop is composed of several individuals which has the form like that: 5 W4 ?6 `- X% c2 [% G# b, A; Q5 @, i' M% G
{'Gene':a object of class Gene, 'fitness': 1.02(for example)} & T; p+ ?% _- [ L7 z8 v Representation of Gene is a list: [b s0 u0 sita0 s1 u1 sita1 s2 u2 sita2] + s6 Y" l- H/ S5 b* u. \" e2 z3 t( A
''' 5 z2 F7 P5 M* A% o% {1 ]: @ #parameter = [CXPB, MUTPB, NGEN, popsize, low, up]+ R6 `9 d( h% E- a) I
self.parameter = parameter# Q( o" v% ~3 o
1 C8 _. W5 ?" g
low = self.parameter[4] : ~2 f% b$ ?- y7 \8 o% W* p/ l up = self.parameter[5]; q0 I+ s0 m( w# O7 M; {
2 X5 y3 j- A1 P0 I) Y+ Q1 L9 t$ f self.bound = [] 4 q0 W5 o" \' Q. P( e! u: m5 | self.bound.append(low) $ [6 E7 H8 X, E' B! j+ ^; a self.bound.append(up) 1 z# H1 q- V! ^: y8 M+ D+ S8 I2 }5 g0 Q6 @4 W: _* X
pop = []$ m* z% o3 v1 S
for i in range(self.parameter[3]): * M; T) o) P" O+ o3 P, |4 p geneinfo = []$ C: ]- ]/ h4 k1 i4 v+ d% w: g
for pos in range(len(low)):3 T, `( v( }' f7 p8 l8 c
geneinfo.append(random.uniform(self.bound[0][pos], self.bound[1][pos]))#initialise popluation2 g& K- e5 j( {( V0 o9 F; a
4 w5 q- w- k: l, C8 ^( H6 a' c fitness = evaluate(geneinfo)#evaluate each chromosome% b7 H: G% u6 m) M, D
pop.append({'Gene':Gene(data = geneinfo), 'fitness':fitness})#store the chromosome and its fitness $ t6 q" `, d( |' H2 @; E% g* @/ J7 b0 d0 i
self.pop = pop ( x F- |; o, b- w8 |3 y a self.bestindividual = self.selectBest(self.pop)#store the best chromosome in the population $ T9 v( ?, m. e. H$ j 3 o1 M" Q9 B6 m0 ^ ] def selectBest(self, pop):& K; l5 m1 Y, A! e' L
'''- t9 ?) T1 v" y$ M' ?
select the best individual from pop 1 ^4 U0 I& g& J5 a4 [9 ^7 W% Q3 M ''' 0 I/ o% {5 v; r& ~+ y/ f2 O6 Z, J s_inds = sorted(pop, key = itemgetter("fitness"), reverse = False)) A1 o$ p! F2 d( [
return s_inds[0] ! i& g: f1 c4 O6 m* q9 }/ z 3 ]' D' \# b/ ^' n! @ def selection(self, individuals, k):# |$ {# Z2 d" R5 K6 b4 ]$ n" A$ A
''' S" }& S( C! [4 X" h
select two individuals from pop- y: V8 m/ Z4 g! x8 F/ V$ d9 n
''' + P( v U8 u7 x3 g8 }5 x s_inds = sorted(individuals, key = itemgetter("fitness"), reverse=True)#sort the pop by the reference of 1/fitness 2 F$ H7 |3 l# u0 Q5 q sum_fits = sum(1/ind['fitness'] for ind in individuals) #sum up the 1/fitness of the whole pop( a: h( M \9 L0 J6 g7 v& P5 ^
9 ^2 P# x c7 z0 V chosen = [] 7 h; @1 I0 g; Q0 m; ? for i in xrange(k):3 l2 y5 N4 J0 a5 g1 V
u = random.random() * sum_fits#randomly produce a num in the range of [0, sum_fits] : s$ @4 Q1 o5 @( n0 q# X6 `- y% d sum_ = 0# ^! b' N1 S5 ~9 N5 G$ ^9 l0 ?
for ind in s_inds: k" z: c3 d5 @' |7 A: z: C5 y sum_ += 1/ind['fitness']#sum up the 1/fitness: u) c2 `0 f, _4 c$ v
if sum_ > u:4 K3 v! \- B" A/ ^4 w2 n
#when the sum of 1/fitness is bigger than u, choose the one, which means u is in the range of [sum(1,2,...,n-1),sum(1,2,...,n)] and is time to choose the one ,namely n-th individual in the pop . [1 C+ k, A) {" T; J( p chosen.append(ind) - z: D. h4 [8 u, A: H8 T1 R break * o( o o# r7 T1 o0 q9 _+ i* R4 V+ | 5 O) w0 D$ N; ] return chosen ! e) }! R( H$ q$ Q" e+ K+ J
: p: x5 c0 i: v7 b
& k8 m2 S4 Z3 n9 b2 k _* ~ def crossoperate(self, offspring):0 F& {9 x a& k
''' 1 [$ P/ r7 O2 q3 h cross operation5 Q; Y- _ ^6 _$ j8 G( H
''': Q0 c4 I6 v1 Z8 h& q6 q8 x5 B
dim = len(offspring[0]['Gene'].data)8 o) d( s. j6 a6 C) m5 D% q1 V
4 @$ \- Y* M1 p9 r$ O) [0 i5 u7 k geninfo1 = offspring[0]['Gene'].data#Gene's data of first offspring chosen from the selected pop ! \( }2 j# N4 `& @" T( m4 W$ r geninfo2 = offspring[1]['Gene'].data#Gene's data of second offspring chosen from the selected pop " a9 P. _" m4 c! X b! ^( k! F; l: p" m9 {9 F& E" }
pos1 = random.randrange(1,dim)#select a position in the range from 0 to dim-1, ! X5 C( q1 S6 r! \$ b4 y
pos2 = random.randrange(1,dim) . T* D: z; L/ T( X" F( @9 M5 X% K) N& v& z9 }
newoff = Gene(data = [])#offspring produced by cross operation % q7 u, j# a. P+ X! Z2 F temp = []$ Y# U4 A ?/ U# W" p+ O
for i in range(dim): 7 A% L1 O* ^5 C if (i >= min(pos1,pos2) and i <= max(pos1,pos2)): $ o8 @7 `7 F/ q temp.append(geninfo2) R5 k1 q6 l4 D9 L #the gene data of offspring produced by cross operation is from the second offspring in the range [min(pos1,pos2),max(pos1,pos2)]& B& d% b$ g0 @ V8 `7 u) M
else: 2 T" y, w1 N: K7 L# t temp.append(geninfo1)* {4 C$ v, b4 T( b1 x( ?* B
#the gene data of offspring produced by cross operation is from the frist offspring in the range [min(pos1,pos2),max(pos1,pos2)] $ K" J2 _: x; [ newoff.data = temp ; O( s( R6 B8 j3 x( d( `" H k" h1 v7 ]% ^" S3 J% {4 P
return newoff , M% A9 H0 u7 ?$ E+ l; t2 M: c) D: _- V( |7 F
9 s4 Y7 L3 U: w8 e% g: ^ dim = len(crossoff.data) 4 H% T* t0 y# t+ F: s {7 D+ b5 }2 H: ]+ O# Y y8 R2 y
pos = random.randrange(1,dim)#chose a position in crossoff to perform mutation. " ~2 c+ N' @( S, l9 t J, M, @; I+ ?) n
crossoff.data[pos] = random.uniform(bound[0][pos],bound[1][pos])0 D2 f/ q. W5 W$ a# ~0 S
return crossoff , ?5 ?3 j4 \% V/ k( Q N M K. S9 K$ H4 I& v/ H* b. w( o8 E# r def GA_main(self):& x, t9 t5 g5 _5 L4 y
''' / v7 E, A6 d7 V3 c9 ]- y/ @ main frame work of GA9 ]$ r4 B! h& F/ f6 V* W! Y
''' " ]! o1 C+ n6 \& q8 a5 F i. a( |" M" ^. o. D& m7 Z
popsize = self.parameter[3], H# v. n- M$ e$ K- @& g! s) P
, y; g! I- r8 i0 p5 j print("Start of evolution") . ?# p8 Z! ? e; |8 O5 ? 0 T, Q) ^- O0 N* V& g" r ]% h # Begin the evolution " }% H, V S4 e' z for g in range(NGEN):1 s6 |& l, j) e/ _( R
?7 ~* W' e, n print("-- Generation %i --" % g) & ?" U# v; g7 b/ F
2 C5 v- |, c5 R( x
#Apply selection based on their converted fitness: a0 [4 w* j9 y1 |6 e9 J% i
selectpop = self.selection(self.pop, popsize) 6 \& ~& C' W0 R' b1 w' m9 Y& F" b6 }! V: D0 \+ c
nextoff = [] 7 ^% P0 V C$ ~6 C
while len(nextoff) != popsize: $ c9 |$ `; s9 J k: z6 ? # Apply crossover and mutation on the offspring 5 s: ?; U4 i/ O+ W3 y( S& H$ i3 [2 a* z2 f- n
# Select two individuals; u5 h7 O- Q, u5 O6 l; b
offspring = [random.choice(selectpop) for i in xrange(2)] 8 s4 @; D8 f) _; A- ?9 z! q8 k0 r; a/ j9 o' d) D
if random.random() < CXPB: # cross two individuals with probability CXPB* y3 E( y/ \# [. V9 b7 K& @! B( i! J) g
crossoff = self.crossoperate(offspring) % o; Y1 }2 z+ k2 N2 }: c fit_crossoff = evaluate(self.xydata, crossoff.data)# Evaluate the individuals ! o2 B) A* H0 Y( V( B( [/ m& f. M2 a' B# }- `
if random.random() < MUTPB: # mutate an individual with probability MUTPB9 \7 P V: u# b% Q* y
muteoff = self.mutation(crossoff,self.bound)/ x: f" k; `! C u
fit_muteoff = evaluate(self.xydata, muteoff.data)# Evaluate the individuals . S4 b+ ^" E( F6 e Q3 R nextoff.append({'Gene':muteoff,'fitness':fit_muteoff})# h9 x" `* Q( v; H, j
/ @! _$ ~ ^7 e; u+ X/ L2 s
# The population is entirely replaced by the offspring5 l1 [& w8 D" P/ P; ]
self.pop = nextoff5 t1 h a2 l1 k) d! O' b& c4 l
% |( h" c# F- Y
# Gather all the fitnesses in one list and print the stats $ R* j# U- j: ?6 }/ W- i fits = [ind['fitness'] for ind in self.pop]0 C- A9 b& |! L4 t( m/ N3 d
) l1 q) |$ t7 Y1 A8 @0 a length = len(self.pop) $ g- e, m4 M) Z+ p, N mean = sum(fits) / length ! ^, B0 G4 M) H1 P6 |& i) [ sum2 = sum(x*x for x in fits) ! s$ H$ ^3 @7 Q f! G$ `' r; T1 x. p std = abs(sum2 / length - mean**2)**0.5 6 a- O) t b3 Y best_ind = self.selectBest(self.pop) + j" M3 X; F3 X t 2 u2 X' A4 k% E: z6 s if best_ind['fitness'] < self.bestindividual['fitness']:3 z G; z1 x! P8 ~: x) r# v5 K" {
self.bestindividual = best_ind& c% C( x- A/ l3 _% }
6 p1 |' f5 {# x6 f4 ]
print("Best individual found is %s, %s" % (self.bestindividual['Gene'].data,self.bestindividual['fitness'])) & _, r# ~* k8 C) _ print(" Min fitness of current pop: %s" % min(fits))) ]. T- Y6 O- n8 E
print(" Max fitness of current pop: %s" % max(fits))6 q. Y! s$ h+ i
print(" Avg fitness of current pop: %s" % mean)* T9 V" a- k* `
print(" Std of currrent pop: %s" % std)$ ^/ H. [% d' `, }# ]
0 E! w/ f! U" Z7 X. N* E0 {" P
print("-- End of (successful) evolution --") ; W- `, [ i3 a0 ^# M) k8 q' c4 Y/ x8 d: @- G. b- g+ m
if __name__ == "__main__":; Y6 ~) @* L3 X7 p: F7 _2 d
. U* y, \, k# p8 c% \
CXPB, MUTPB, NGEN, popsize = 0.8, 0.3, 50, 100#control parameters 8 Z0 H: y; p6 J# ` ) t& n6 |: X- W9 x- V" u9 Q up = [64, 64, 64, 64, 64, 64, 64, 64, 64, 64]#upper range for variables 8 z9 G: D7 A( o: [9 R# R low = [-64, -64, -64, -64, -64, -64, -64, -64, -64, -64]#lower range for variables 0 C5 A/ P0 B" P$ X/ n parameter = [CXPB, MUTPB, NGEN, popsize, low, up]$ F9 i2 m5 a: j4 J2 r/ }# j* W0 j
/ b" }. y1 ]# W run = GA(parameter)0 L+ L& `+ @# }6 g/ R' t- L& v5 Q& e
run.GA_main()4 k. m( u6 r" ]( w
———————————————— 6 J2 J& q0 i+ ]- s版权声明:本文为CSDN博主「bible_reader」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 + z9 u$ z0 Y$ B- z8 Y! q原文链接:https://blog.csdn.net/bible_reader/article/details/72782675- G2 l9 Z8 q4 L. s& n% W
$ l- o4 V4 C, b. |
: ]* E) X8 n8 I5 }/ J