4 P! E5 T y4 } E( p. K. d: C. N" x" ]" M; X5 B
当依据轮盘赌方式进行选择时,则概率越大的越容易被选择到。4 G5 Q, ^1 M. H$ u& P
- z" E" r4 K, k; E
3.4 交叉操作7 e) N9 o" Y2 N0 F$ F) a: g
交叉操作也有许多种:单点交叉,两点交叉等。此处仅讲解一下两点交叉。首先利用选择操作从种群中选择两个父辈个体parent1和parent2,然后随机产生两个位置pos1和pos2,将这两个位置中间的基因位信息进行交换,便得到下图所示的off1和off2两个个体,但是这两个个体中一般会存在基因位信息冲突的现象(整数编码时),此时需要对off1和off2个体进行调整:off1中的冲突基因根据parent1中的基因调整为parent2中的相同位置处的基因。如off1中的“1”出现了两次,则第二处的“1”需要调整为parent1中“1”对应的parent2中的“4”,依次类推处理off1中的相冲突的基因。需要注意的是,调整off2,则需要参考parent2。: A' P9 F7 z6 e' ?3 D. `! ]
' N9 y4 Z/ Y0 T5 \ ; m/ \- {5 |9 z3 a! t1 I4、Python代码9 f/ y) o6 m# A6 T, V3 N5 o. h5 M
#-*- coding:utf-8 -*-/ h# ^, W6 S \: D2 k+ z
: s; j/ B) R* [+ J# L
import random ; ]; U7 z/ C/ E, y, uimport math 1 g9 z6 X9 J9 I& F1 Gfrom operator import itemgetter 3 C! R+ V3 h/ y/ ?3 x9 C $ m# v S2 e5 @& `3 l6 e0 u# Lclass Gene:' r9 K. ^3 W9 r% M' l" ~$ p
''') c+ |/ N3 A7 @6 I, J
This is a class to represent individual(Gene) in GA algorithom$ r9 S9 @7 u N- V) n1 B& b
each object of this class have two attribute: data, size ) r9 g; a" E; [. @ ''' " ^4 \% ~ v3 X9 M; A6 L* m1 ?- d def __init__(self,**data):0 y7 q! p7 V' j7 s# W
self.__dict__.update(data) ; d# _2 x0 B. D8 r$ h8 I9 s$ T. b
self.size = len(data['data'])#length of gene / L; y4 g k4 q5 ^; }& _+ `, `4 p6 S% d- |2 }1 m4 O, f
( u2 k0 m2 e g5 [* z5 ]- x& qclass GA:) {0 R8 f7 j f7 x \
''' 7 D% O4 F3 z) }, M3 d+ B- P% q. t This is a class of GA algorithm. / m# a2 G8 ]; Z, i6 L3 I! I
'''# ?4 L* c2 p5 T0 \6 h& q: E! [/ `- p5 g
def __init__(self,parameter):% Y- d7 }% T/ O
'''* {2 }* C5 {; T2 i: I4 e5 V2 T& V" `
Initialize the pop of GA algorithom and evaluate the pop by computing its' fitness value . . E; j$ ^- P! b; a% E The data structure of pop is composed of several individuals which has the form like that:1 u: l$ W6 X3 k: W l: i$ k
7 k( @1 E8 Q: s# F
{'Gene':a object of class Gene, 'fitness': 1.02(for example)}" i6 S; \, j9 |" s3 h
Representation of Gene is a list: [b s0 u0 sita0 s1 u1 sita1 s2 u2 sita2]+ Y$ f8 A& U% g+ P" ^" S+ C
( n3 T5 h1 s0 N. Q& x# c& D '''& n8 C/ X4 s$ l
#parameter = [CXPB, MUTPB, NGEN, popsize, low, up]0 z: D5 d' Z' k" b9 u
self.parameter = parameter 1 h8 \5 s$ t5 l& d( {' e! M0 a1 z3 p2 ]" d; M9 [+ n
low = self.parameter[4] ( @$ N0 r1 s/ k/ Q5 E up = self.parameter[5] ! J& }# Y& r2 F$ Q# Z- P) F' Q; D( G
self.bound = [] M3 p o; k8 Q l) L) d self.bound.append(low)7 U! T, `" S; j$ Q/ P
self.bound.append(up). S4 ^' f' I; N3 G
* y' u% p0 e0 \; i7 G7 V$ b
pop = [] . t: l+ L# [/ { for i in range(self.parameter[3]):4 W/ @4 i$ \* n1 D9 v
geneinfo = []: P/ D, z8 k$ ?) Y' D" F
for pos in range(len(low)):/ A+ e6 b4 N- ]4 D; s9 _1 J, {
geneinfo.append(random.uniform(self.bound[0][pos], self.bound[1][pos]))#initialise popluation 4 r! F$ R( B" y; R5 Y) Q/ V) G( C: D4 q( D
fitness = evaluate(geneinfo)#evaluate each chromosome 1 q6 b9 l; \% c2 J& I9 P' n pop.append({'Gene':Gene(data = geneinfo), 'fitness':fitness})#store the chromosome and its fitness 2 W" k, |2 \ S+ E l, o- a N3 z2 l- r0 [5 V! g ? self.pop = pop8 P5 Z" L7 ?. y [& X2 g* I% N
self.bestindividual = self.selectBest(self.pop)#store the best chromosome in the population 6 z- \! O/ e0 Y/ \' q7 ]8 U. i- u0 G! K5 T- w7 C: t" q
def selectBest(self, pop): . I1 y0 _3 s1 A2 f2 b '''* _ v `3 I8 P& l/ R S0 ~
select the best individual from pop 2 C/ Z- Q4 O5 r# n p3 k '''! Q; v4 [3 J$ ?1 X6 J; E) l
s_inds = sorted(pop, key = itemgetter("fitness"), reverse = False) ( C9 P( c7 L0 L Y return s_inds[0]% z9 J1 i8 u5 _
9 F- [1 B D3 O7 r def selection(self, individuals, k):0 m) v) L3 R: W1 a/ u+ q
''' ) F2 o4 t) ^* D6 e- j select two individuals from pop : s) V$ h0 C, h" K; V8 [ '''' E2 y* E: k" c9 [7 P0 @
s_inds = sorted(individuals, key = itemgetter("fitness"), reverse=True)#sort the pop by the reference of 1/fitness 5 c/ h; E& U) D# G: O7 H sum_fits = sum(1/ind['fitness'] for ind in individuals) #sum up the 1/fitness of the whole pop & D* p/ t( u# ^6 T 0 F5 @1 a' H. h# c# U% l& [ chosen = []9 N( _5 M( Z$ q, P7 f7 M. J3 o
for i in xrange(k):' b: Z$ C$ n8 N' {4 [) b# ~
u = random.random() * sum_fits#randomly produce a num in the range of [0, sum_fits] , U6 R5 K1 p+ Y4 c. X+ ?8 K sum_ = 09 i: ~. c; O! T+ p& @
for ind in s_inds: ) Y* V- w8 i J F& W sum_ += 1/ind['fitness']#sum up the 1/fitness - @, R; y& I" m+ g% W1 R4 k if sum_ > u:$ {( p0 p! ]( m9 E. K) P0 \% D
#when the sum of 1/fitness is bigger than u, choose the one, which means u is in the range of [sum(1,2,...,n-1),sum(1,2,...,n)] and is time to choose the one ,namely n-th individual in the pop( B3 K! s* f3 a( l+ H1 P" D6 K
chosen.append(ind) 2 A1 b+ G5 f, q4 M/ T7 d- b/ { break# ?3 F5 A/ t* B& C+ l
0 [* z" r7 J! F9 z1 b9 j return chosen : h4 }$ n: n' u9 w2 z , `/ z2 d- l4 _2 H! D3 e; |* Z. a O" t
def crossoperate(self, offspring): - D2 W( E# r2 s/ l% ^' B' Q" \ '''9 W3 F0 H0 c& l
cross operation) d2 r3 w- \( A8 T" V
''' + _4 c$ l6 ]2 p dim = len(offspring[0]['Gene'].data) % Q- c# P7 _4 d" l: G4 s3 H$ k' \9 H: |
geninfo1 = offspring[0]['Gene'].data#Gene's data of first offspring chosen from the selected pop + c0 K! q' W3 t/ R geninfo2 = offspring[1]['Gene'].data#Gene's data of second offspring chosen from the selected pop f, x) x) J, A1 C: T1 Z7 q- m5 [# P _5 X0 I
pos1 = random.randrange(1,dim)#select a position in the range from 0 to dim-1, # n Z) R6 U" ~8 i
pos2 = random.randrange(1,dim)+ P9 O3 e+ e( i; v/ A% A
: K4 T- @/ Q" q9 U8 F newoff = Gene(data = [])#offspring produced by cross operation 5 p2 j2 L$ \/ [4 s temp = [] , `5 \6 `; K0 ]: b# T! U1 Z, a for i in range(dim): " k. a7 B. X7 @ if (i >= min(pos1,pos2) and i <= max(pos1,pos2)): : |/ d1 [6 C$ A! \! N temp.append(geninfo2)& S. |" n( }. m, D: W1 ^; F1 [
#the gene data of offspring produced by cross operation is from the second offspring in the range [min(pos1,pos2),max(pos1,pos2)]' c- u$ ]" V( p8 j' u6 D
else: ! F5 R+ f9 w/ b/ x' H: ?/ X3 H; V temp.append(geninfo1)$ k5 F6 ^) D+ f% |0 K: e
#the gene data of offspring produced by cross operation is from the frist offspring in the range [min(pos1,pos2),max(pos1,pos2)] # V; \" M! P/ s/ R% ?- | newoff.data = temp) r2 q1 {4 b; L8 P2 z- Z
" V s; k9 B7 o) N5 o1 @
return newoff 0 f& o% W R% F, j3 Z. v% R% F' x- O. p% h1 l
2 z% d" l) x: |$ z def mutation(self, crossoff, bound): : [# ?# ]' c2 S6 m# t ''') x' b& p6 b/ {- J4 e- w/ B' M
mutation operation - d) s2 D3 A a+ b: f '''; F) z t0 i4 T7 b$ X# n
, g: O% U A$ A$ V- C: L6 f5 E dim = len(crossoff.data). H: a7 ?8 N+ e5 `# g" P$ E# p
! Q) `" _# d0 ^. Q' P. S
pos = random.randrange(1,dim)#chose a position in crossoff to perform mutation. + k. `8 Q, Q" z) Y" g' i2 x2 N# w, y5 ]
crossoff.data[pos] = random.uniform(bound[0][pos],bound[1][pos]) 4 x+ ^! Z' }0 \1 J5 q- k return crossoff9 s: E3 r0 _+ K6 o, R8 F+ t
2 S! H6 s0 ^, B* w& S% U. z/ V
def GA_main(self): 6 _% d# V+ }, ^( |6 U0 Q" F, V '''+ N, Z) e" L+ @! y/ w
main frame work of GA- }9 d: a, ]7 `
''' * T& w. N6 ?8 J& b' A- K) j2 ]( o0 y6 I7 ~0 `
popsize = self.parameter[3]# H2 X# ], q" F2 F+ ?! ^
3 V! x' O/ P, [% x! E9 x3 G6 N
print("Start of evolution") # B2 [7 p6 M3 Q5 a" A" [. W . I1 L- W; w5 @! D# }) t) K6 P0 H" Z # Begin the evolution 8 p# F- E- H) O for g in range(NGEN):8 g% y& \$ z! F
3 @' j+ t8 A& \% m* {. n print("-- Generation %i --" % g) ; d9 U$ j4 [9 f7 s- `9 q+ E+ E
; A6 R% p" K, d5 _7 k
#Apply selection based on their converted fitness0 i8 _; o F( e# K2 x
selectpop = self.selection(self.pop, popsize) 1 C: k- |1 u, i- U 7 z9 s& g! V- o# F, l3 h1 z7 W; z nextoff = [] , i! I! x: f4 t" u. C6 Z0 z- C1 A% ~ while len(nextoff) != popsize: 2 i7 C0 B" W+ P7 s/ d
# Apply crossover and mutation on the offspring - s9 C% S9 j n! L& ^! [
# ]$ w7 |6 A: g9 D! U: `& {
# Select two individuals 4 S/ o1 e7 a) ^7 w4 Z$ F4 D0 w, b offspring = [random.choice(selectpop) for i in xrange(2)]# E" \& s7 L2 B0 o
# a2 r3 @ f# }2 f* {
if random.random() < CXPB: # cross two individuals with probability CXPB ; n1 ^* a, I1 u; N3 f1 F. M: V: T crossoff = self.crossoperate(offspring) Z$ a3 S) f; G' e% ] fit_crossoff = evaluate(self.xydata, crossoff.data)# Evaluate the individuals , E0 Z3 i+ N$ ]4 h& [$ j! j 5 D3 r! Z* N! B" w, D if random.random() < MUTPB: # mutate an individual with probability MUTPB% {8 ^* b7 |# t% b) v. x' @
muteoff = self.mutation(crossoff,self.bound)/ h. ^( F3 z" L5 u2 e
fit_muteoff = evaluate(self.xydata, muteoff.data)# Evaluate the individuals) i: S M( c: P
nextoff.append({'Gene':muteoff,'fitness':fit_muteoff})* n0 u( W8 r) a- A2 h# |4 `
3 f0 [2 A+ x- |7 E) U # The population is entirely replaced by the offspring 4 \! M) B6 Q8 ?% Y# p( ^9 p self.pop = nextoff/ E# E: J7 O6 f6 D
1 Q2 m( H& D* g' J1 a8 C" S) B- @) d # Gather all the fitnesses in one list and print the stats / T/ p1 A! c6 y; ` fits = [ind['fitness'] for ind in self.pop] ; U2 j/ X7 x$ e$ H% b % w3 |. W F( B0 w: b length = len(self.pop) " C: y/ n% q3 i+ r mean = sum(fits) / length # D) O+ r4 k8 x) ?7 L$ e4 z sum2 = sum(x*x for x in fits)1 U) T6 c+ _ w7 K5 P; u- i
std = abs(sum2 / length - mean**2)**0.5" U+ Q+ Y: |7 k" I1 [, W
best_ind = self.selectBest(self.pop) ' A, F4 }, U' J1 x) E5 o2 E & q& P% s9 |8 R9 F if best_ind['fitness'] < self.bestindividual['fitness']: % f- s/ A* d5 l- T3 d self.bestindividual = best_ind : L$ N5 \" d' k, h* G. H6 @8 \, N) n0 |4 y1 N" W% m9 ]
print("Best individual found is %s, %s" % (self.bestindividual['Gene'].data,self.bestindividual['fitness'])) : X4 u) v+ M7 M print(" Min fitness of current pop: %s" % min(fits)) 6 B# q l: a; I( ~/ q& K+ w0 Q print(" Max fitness of current pop: %s" % max(fits)) & I$ S; G L2 y0 L7 X+ \ print(" Avg fitness of current pop: %s" % mean) 4 S) p7 V9 j0 l6 B+ ` print(" Std of currrent pop: %s" % std) 4 s% E, c& O% x" b3 q7 l) P7 S" S' S# n7 H
print("-- End of (successful) evolution --") - M$ C1 m0 m% C, g2 k8 W ]) {1 Z. a4 |2 a6 d7 G- V" `
if __name__ == "__main__": 1 a" f q7 j- A! c. x- f" w [- A/ K9 ]) {+ P/ {: @ CXPB, MUTPB, NGEN, popsize = 0.8, 0.3, 50, 100#control parameters: A x2 |: _) E8 \0 T9 b: M
: b) I# j8 S1 |3 J* V, q9 Q7 A& n
up = [64, 64, 64, 64, 64, 64, 64, 64, 64, 64]#upper range for variables % B1 `5 W0 F- } L low = [-64, -64, -64, -64, -64, -64, -64, -64, -64, -64]#lower range for variables0 M$ t3 D+ u" D
parameter = [CXPB, MUTPB, NGEN, popsize, low, up] ) ?+ D; M/ \, D) I% ?: \" a9 b7 O7 x/ y
run = GA(parameter) l& d6 F/ B& U1 h) V run.GA_main() 6 H9 I9 S* c1 E) V+ U5 P————————————————' q5 d% G* |/ C
版权声明:本文为CSDN博主「bible_reader」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。! Q3 c5 [& G6 {% ?& w
原文链接:https://blog.csdn.net/bible_reader/article/details/72782675 " }4 q% }* p4 x9 T; h6 ]0 m" _ D% s6 V4 D0 @! _$ C& t! E5 ?
4 U0 W2 v0 y5 ?4 x+ G