QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3913|回复: 6
打印 上一主题 下一主题

实二次域(5/50)例2

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 14:05 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:59 编辑 9 D2 S$ _. N4 c2 o. O

    ( J9 y$ G+ L1 Z. y& P6 LQ5:=QuadraticField(5) ;
    . u9 `- F5 k- D9 f* Q6 S$ H$ o( qQ5;
    # \% w  o  Z8 S  v4 D# W, ?8 ?( VQ<w> :=PolynomialRing(Q5);Q;
    : Z6 U3 h8 r" w. x7 O5 K1 t8 C3 @% w* h7 j7 U4 h
    EquationOrder(Q5);. M( ^/ @$ S6 E$ h
    M:=MaximalOrder(Q5) ;
    , G, Y: q5 {# n+ n! D9 zM;7 C( U+ [0 i! i( _, N, D
    NumberField(M);
    9 M$ l% B" Z# j1 y/ AS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;  `* z. E$ R5 I
    IsQuadratic(Q5);IsQuadratic(S1);IsQuadratic(S4);IsQuadratic(S25);IsQuadratic(S625888888);
    8 u/ M% H) \0 m$ F3 @% hFactorization(w^2-3);# o) O* R$ }7 p7 y: M/ _  r7 i
    Discriminant(Q5) ;0 W7 g; ]9 g4 D. @3 k7 s
    FundamentalUnit(Q5) ;
    ' S" [$ a. B, j1 o2 R2 Q* n7 nFundamentalUnit(M);) C. b/ Z  u3 g) j  [) b
    Conductor(Q5) ;& x3 x7 r6 Q4 _8 M- S7 n2 |" U: A7 g
    Name(Q5, 1);! B3 S& [: c5 ?* `
    Name(M, 1);7 G# j6 [" ]; J4 p. a" m
    Conductor(M);
    ' J- {; e# _0 a: U% s, e6 fClassGroup(Q5) ;6 Y, c0 z/ o0 w& j
    ClassGroup(M);
    7 l6 v" O/ l/ y: a0 M/ T. J- n- ?ClassNumber(Q5) ;
    % K6 G7 b9 H2 V9 c6 s, X% ZClassNumber(M) ;8 m% l  o" H$ t: b. O# L; F
    7 [$ t3 A2 i  Y7 j- b) W1 Y
    PicardGroup(M) ;
    6 x2 Y: j0 P+ b  v4 PPicardNumber(M) ;
    * G* H1 e' F) C9 a. g9 E% b" Q# x" Y
    / @: h5 u1 p" E" W
    QuadraticClassGroupTwoPart(Q5);4 L7 R3 y# ?: H" M/ P
    QuadraticClassGroupTwoPart(M);
    , s$ q1 F  q! C
    + t/ w5 R! J1 f9 r9 Q1 _; Z1 z- V' G5 f, O1 Y! E
    NormEquation(Q5, 5) ;2 D9 U+ r% z" c, c
    NormEquation(M, 5) ;
    % U1 M7 e9 k# g3 @
    % Z. b5 H+ P% P8 O% ?& S* u: b; Z' {3 B
    Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field
    1 s# G5 E; ]: k/ CUnivariate Polynomial Ring in w over Q5
    - A) p1 c' A& G7 k% xEquation Order of conductor 2 in Q53 {% H( J  `) R. P% ~/ T4 f
    Maximal Order of Q5
    # f" V5 g2 R4 o4 D3 fQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field8 F& [* H* `) n
    Order of conductor 625888888 in Q5
    3 a1 N- q  f0 S9 q3 }! s, M, Y# gtrue Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field6 S) s0 s; ]) ~7 n# a
    true Maximal Order of Q5
    # ~1 U7 R5 p* _9 a$ o+ r& ~/ h0 Ptrue Order of conductor 16 in Q5
    - M; ]6 [4 A. |5 V6 E8 r; X( Itrue Order of conductor 625 in Q5
    % _3 L! Y6 u  J+ U6 S0 I% p  O0 H/ Vtrue Order of conductor 391736900121876544 in Q5
    + P2 g4 |( o* T8 j/ m6 K& \/ ~3 o[
    7 Y5 M/ m7 C: T    <w^2 - 3, 1>- A9 J  A; s5 K% h# @% N
    ]
    7 u) w! L6 F, T9 I5
    * A6 W+ A( B1 G' ]6 c8 A1/2*(-Q5.1 + 1)& _/ E7 F$ f  k, `7 y. _
    -$.2 + 1
    " X" B% t; g5 g- z5 \" s5+ P5 D+ y/ o2 Q0 b  H  F; s
    Q5.1
    3 m+ r0 \' a0 j6 ^" F$.2
    , \1 t) e7 O4 l/ H3 H1) B9 o; x9 s( s( }6 @" V' @/ Y
    Abelian Group of order 1
    7 h+ c; r: B* ^0 GMapping from: Abelian Group of order 1 to Set of ideals of M1 Y5 }3 f% S3 A/ U. G0 U
    Abelian Group of order 1
    : B9 E5 ]! F" L+ D; M2 [Mapping from: Abelian Group of order 1 to Set of ideals of M  B1 d6 x: M+ Y+ m( }8 a+ u: W
    1
    $ Z$ a" X, J6 F1; Z* _) D; R. v5 L0 t
    Abelian Group of order 1+ y$ c& B/ N! m. C" X
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no2 f8 ]. a. m/ V$ w
    inverse]/ ^% G* u7 i  o% q/ l; R4 C
    1) W( F: C7 @8 B& S
    Abelian Group of order 17 B" |+ u2 m3 Z6 I/ H
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant) c; Y5 }7 A8 r/ W
    5 given by a rule [no inverse]
    7 ^  S0 V9 ?* n% Q2 S4 Z& cAbelian Group of order 1- o: \0 d" S) `# y1 a7 B
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant; _# }5 p+ {/ {& M
    5 given by a rule [no inverse]
    7 Y9 j) L* [- r: Strue [ 1/2*(Q5.1 + 5) ]# N# D0 W0 i7 ~+ g
    true [ -2*$.2 + 1 ]# ?9 X6 s# M0 r# U( z
    . a0 i9 K2 b: x- _' m( Y

    ) v9 J* L# I8 k6 O9 [! d  l) d( B- z- o7 C; _

    - E- u& ~9 R3 k# m) [0 a" ]2 F; v( M/ ~) n5 h  @" a
    * z5 p; i2 n/ W! h% L) Z

    % t8 p& R2 ^  E# S4 J: x# z3 N
    - u6 w! \( u. ]5 }4 i) `' e% G

    ' a" Q5 a" E6 `/ X% f* {4 L- ^! h8 V% d  Z# ~8 S
    ==============5 C) |, }! |1 q: k* S& j

    8 C9 J. B8 ~1 c! lQ5:=QuadraticField(50) ;
      v/ k2 H( o- n; Y4 e+ {* ^Q5;" E3 q  }7 M7 _: ?: M0 j

    ; ~/ ]6 u$ ^" Z, l) M; K, pQ<w> :=PolynomialRing(Q5);Q;
    2 u3 ^5 N7 R% d' m; |2 t9 rEquationOrder(Q5);
    3 n% l2 J9 j0 z/ vM:=MaximalOrder(Q5) ;, s) L: P$ B2 N8 p
    M;) w$ ?% E, f$ ^4 q* U. ^
    NumberField(M);
    2 M% l" w3 Y% t8 h3 vS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;4 k! u: C# _) l9 C" H
    IsQuadratic(Q5);
    5 ?5 h% n9 j/ _: \; E  w: Z5 lIsQuadratic(S1);* D& U% Y' u# U4 l( G
    IsQuadratic(S4);
    # w+ T' |0 n6 K+ }' xIsQuadratic(S25);
    3 W4 {8 X' F" w- J1 ]  N. }IsQuadratic(S625888888);
    ; h( z, F& |2 l: R0 e# X. P- l5 ^Factorization(w^2-50);  
      g' \- P8 A3 ^Discriminant(Q5) ;" W7 N9 H7 z% T- }
    FundamentalUnit(Q5) ;) }6 C, q1 t! C* B
    FundamentalUnit(M);) H) @% v; ^! s; _- C+ N
    Conductor(Q5) ;
    5 c4 D; F6 ]: p% o( |/ x
    / \( P, h/ g6 s- y4 uName(M, 50);
    7 M: X7 Q8 i3 [; q# uConductor(M);
    - E8 }7 S2 N/ YClassGroup(Q5) ;
    $ J8 x. x* Q& n$ v( I' GClassGroup(M);
    $ b) F" Q6 W. I! z% fClassNumber(Q5) ;% P. T* q2 B4 X) m& Q6 ?
    ClassNumber(M) ;
    5 Q5 _; b' q& ?. i# bPicardGroup(M) ;( q- K, w9 l, V1 \5 o/ V
    PicardNumber(M) ;8 |0 j% E5 x, n/ e1 V

    / h! i3 p4 ^, S- s# FQuadraticClassGroupTwoPart(Q5);5 J. d! `1 p* i& E
    QuadraticClassGroupTwoPart(M);
    : n: E: g7 P6 B" {; p) TNormEquation(Q5, 50) ;8 u) @" T2 s4 l
    NormEquation(M, 50) ;; a$ g+ F! @  {; E% s* a- h$ {# q+ {

    - F; Y+ }1 n( \; H* XQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field' _, `" s  X8 u- N0 S# c% ?$ E
    Univariate Polynomial Ring in w over Q5
    $ `) O0 o& L# J$ V7 t( _Equation Order of conductor 1 in Q5# z9 {+ l  R  W
    Maximal Equation Order of Q50 M7 W; q4 h8 @; k7 S  g3 W
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    * Z% n- W; G; t1 L1 dOrder of conductor 625888888 in Q5
    : E" q7 Y* c$ xtrue Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
      _: [  v: j; ]' k$ x! }; M+ _true Maximal Equation Order of Q5
    7 O5 C! k6 ]0 d5 s6 o$ R; [true Order of conductor 1 in Q5
    ! Z$ M7 e' l/ W4 t8 v- J6 Q% Dtrue Order of conductor 1 in Q5
    1 z$ B' x# X3 @  Ytrue Order of conductor 1 in Q5
    * J$ A  U5 h* A; l- T[
    $ i6 Z( b8 G' E. s5 i0 z9 h6 T' ?    <w - 5*Q5.1, 1>,
    + k. ?' b/ v. Q    <w + 5*Q5.1, 1>; z% g$ Y  D, K
    ]: V" H* ?+ j1 j, g; `
    8  {9 V2 a& g) S1 Q
    Q5.1 + 1' ?# K8 v9 e9 Y( J) a
    $.2 + 1
    , q6 m, H+ [' Y$ @, V88 i. N, d5 T1 z) G/ @
    0 v, S& @/ d2 a7 V, D, D  a
    >> Name(M, 50);3 L/ _  I) I  Q" j( a
           ^$ L' V$ e' V; ?  J5 o
    Runtime error in 'Name': Argument 2 (50) should be in the range [1 .. 1]! t. f  m+ I4 V7 k' _/ i+ |

    9 Z2 u' u8 p; ?/ v0 `; D$ X/ ^1: {$ p* z0 _6 V; ?0 j  P- t7 o) F
    Abelian Group of order 1  q+ e# `- T1 [6 [* G- A7 Q/ [
    Mapping from: Abelian Group of order 1 to Set of ideals of M! f# [8 r, f, e. Z. a' I- @/ n* V
    Abelian Group of order 1
    $ t5 K7 I+ L* uMapping from: Abelian Group of order 1 to Set of ideals of M7 M3 S0 a) v6 Z
    1, t' w# I* `8 e. g
    1
    - a0 e( t8 M# u) f1 ^; j/ UAbelian Group of order 1; ~: v# L/ t" J' M4 V
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no+ o4 D  x/ o0 K) H2 q4 e; @( o
    inverse]; O& P, \; K# s! n3 f- `* x
    12 W9 R+ ~3 h, Z
    Abelian Group of order 1
    3 c" i  b3 u1 `5 l2 A  D% g9 BMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    ! A0 z5 h, R! g8 b8 given by a rule [no inverse]
    ! u0 I3 T: U& p8 S: {Abelian Group of order 1! F  Y4 P+ D) h+ \
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    . B7 ?2 |( }% D8 given by a rule [no inverse]/ }+ D% p7 D3 u' h6 H; B% x( i
    true [ 5*Q5.1 + 10 ]
    . f  n) W8 l: wtrue [ -5*$.2 ]
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    二次域上的分歧理论

    1.JPG (177.16 KB, 下载次数: 284)

    1.JPG

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 12:42 编辑 1 A* W  X  t7 i- h) E
    0 _9 ?! \3 J7 }8 a
    基本单位计算fundamentalunit :8 d( u) o7 r& r5 e& D- n
    5 mod4 =1                                              50 mod 4=2
      L* m( _) i" D1 f" M$ \& c8 W7 a+ o% |3 a# c# y# |
    x^2 - 5y^2 = -1.                                 x^2 - 50y^2 = 1.5 U& ^/ R5 I% Z9 r% N
    x^2 - 5y^2 = 1.                                  x^2 - 50y^2 = -1.# Y# H, X) D) d* T! y5 n

    % d4 _0 w- M0 m8 ?5 {% ^% _$ E  Q! Y& d$ a
    最小整解(±2,±1)                              最小整解(±7,±1)8 H6 Q& L6 m- N2 |" n
                                                                 ±7 MOD2=1
    2 y0 ~, E6 `7 M0 d9 R6 S
    # X9 p, C1 h# _; U2 {: i: {- D两个基本单位:

    11.JPG (3.19 KB, 下载次数: 268)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    lilianjie 发表于 2012-1-4 18:31   X  g$ W7 ]' h' p" {( ^+ J0 ~, t( Q
    基本单位fundamentalunit :
    6 B% e0 h. n' p* X* T/ A/ _: ~5 mod4 =1                              50 mod 4=2

    4 v) m( f- |. h; T. {基本单位fundamentalunit

    3.JPG (105.07 KB, 下载次数: 262)

    3.JPG

    2.JPG (140.29 KB, 下载次数: 268)

    2.JPG

    1.JPG (193.2 KB, 下载次数: 267)

    1.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    本帖最后由 lilianjie1 于 2012-1-4 19:16 编辑
    - t/ L! q/ l' Y7 T) v% r
    ' {3 }7 i# D) o/ ~3 {判别式计算Discriminant8 K! x- h. c0 \0 F
    1 i" }2 D+ A0 _6 S
    5MOD 4=1 / a  ~; h  g. i( {+ u" |( A6 O

    * Y7 T2 M; a# d& h(1+1)/2=1          (1-1)/2=0. Q' d/ }# m, ^2 f8 h

    ( k* a# j" _+ Y5 C# i+ j4 a% SD=5
    * w2 f8 U3 K$ k( f  Y6 c3 _) }& T
    7 {! N! g' r! Z
    50MOD 4=2# S8 m% z8 D4 U0 q5 e
    D=2*4=8

    33.JPG (165.31 KB, 下载次数: 261)

    33.JPG

    22.JPG (137.12 KB, 下载次数: 251)

    22.JPG

    11.JPG (163.36 KB, 下载次数: 289)

    11.JPG

    回复

    使用道具 举报

    74

    主题

    6

    听众

    3289

    积分

    升级  42.97%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    lilianjie 发表于 2012-1-9 20:44 ' j; J0 G4 n3 `

    # z! `  X1 T  b2 P3 E# n分圆多项式总是原多项式因子:
    / D3 H0 V9 Z0 u8 _7 s+ U* pC:=CyclotomicField(5);C;7 B7 {$ Z6 Q" w: j: z' D
    CyclotomicPolynomial(5);

    ' [0 X3 {' S& M$ v# w3 I+ p/ [$ e
    分圆域:; P  [" a7 i  J7 C( M
    分圆域:123
    ' l& Z6 [0 s% l! r: a' J1 I- C
    2 y1 L# T. ?+ `+ jR.<x> = Q[]$ J+ Z# L" V3 R% q( m0 i3 p2 i* Q& V
    F8 = factor(x^8 - 1)
    $ h. z3 q6 b1 f1 d# q, k1 A2 pF8
    7 V# o7 Q* {3 z) U& j9 h' x! l5 W& i, h+ r; ?" A* t
    (x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)
    8 O! D/ d. h) f1 x! [# ^' M( t1 |7 f
    Q<x> := QuadraticField(8);Q;, T% c2 p5 ?; B% h1 R( h0 d
    C:=CyclotomicField(8);C;6 w. x2 S+ _+ R$ J5 \
    FF:=CyclotomicPolynomial(8);FF;
    ) u* C& _* V/ r' z- w: ~: ]0 x- O3 }, ?# }6 [
    F := QuadraticField(8);/ Z& _- h6 G  D
    F;  o2 A0 O3 {( D: x4 ~/ u* l3 w" L. l7 |
    D:=Factorization(FF) ;D;
    ( C* X4 X8 t# O$ m3 I4 A1 lQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field; A  s8 V. e0 d
    Cyclotomic Field of order 8 and degree 4
    ( C" I# Z$ l% s. n0 T9 Q$.1^4 + 1
    6 \" L' V0 Y1 GQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field/ w* [: z* h2 X  D+ N* J; q% ]. l$ d
    [
    4 l- Z; }7 _* T; q    <$.1^4 + 1, 1>. e0 u. ~8 ~- E4 Q) g
    ]/ M0 u& M$ {5 o  ?3 D- A1 K7 W
    ' k( m/ W9 m& _1 j7 v) G
    R.<x> = QQ[]
    * ?5 u; j  E- m, ~# ]2 |  hF6 = factor(x^6 - 1), L$ H$ K+ G1 j5 B! h/ y
    F6
    5 m  @6 v9 f$ q# E8 E- m% l9 b
    & E/ K8 q2 _8 t9 b(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)
    * ^2 v6 W& {, k, i
    / j9 l& J6 Y* @Q<x> := QuadraticField(6);Q;
    # C" F" [5 t4 n5 f+ @( HC:=CyclotomicField(6);C;
    9 V6 S2 w+ a' \" j8 m2 ~& p: hFF:=CyclotomicPolynomial(6);FF;
    % r( W# t1 Q* m/ J5 M) h+ L% M. `
    , Y$ ^9 v. y$ \3 U) AF := QuadraticField(6);
    ; ~) \* l# b" a$ w1 xF;
    + v  N/ \/ X9 `+ q2 n3 ID:=Factorization(FF) ;D;* {& P2 p7 y2 ~
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    . L; R0 v$ T7 S& B% p* ]* aCyclotomic Field of order 6 and degree 29 d0 ]6 }& P, n* y6 U* U
    $.1^2 - $.1 + 11 L+ z. M' o+ s
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field: o. k8 v% K* N' K2 y, w
    [) t3 ]8 [: t& F0 k
        <$.1^2 - $.1 + 1, 1>
    4 `$ p; h4 J" k0 U5 a. S- F]* {- y! a  Y- e3 a
    - a& G# {4 ^) P" C/ Q! R
    R.<x> = QQ[]2 J& V/ U* n! k: d* i
    F5 = factor(x^10 - 1)& t  G8 v( b/ S( W% G. T8 z  u, T
    F5
    3 \9 c( d" b. h8 h/ w(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
      k4 ?/ S# k' W4 Z0 J1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)
    ! X$ R$ X9 O8 S/ J& ]$ m8 D& i: q$ o1 |% \% j
    Q<x> := QuadraticField(10);Q;
    # _) ~3 s  F# EC:=CyclotomicField(10);C;& k. |* i* m$ Z. ^/ Z' P4 O
    FF:=CyclotomicPolynomial(10);FF;
    ! k. F8 Y- w9 a& B
    & t* u5 W8 g' C6 Z6 SF := QuadraticField(10);
    : y" G6 r+ c2 d' \3 ?9 A* GF;
    4 J. p6 {- K) T( HD:=Factorization(FF) ;D;% A& H$ d+ g3 {$ C) u3 O5 ]% ]
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    # w! T. z) w* z* b' c  x9 a( YCyclotomic Field of order 10 and degree 4
    ) E0 m% c5 ^' e1 M! i$.1^4 - $.1^3 + $.1^2 - $.1 + 1
    ' {0 m5 k+ u  Z& a) n) G+ eQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field% U" |% i. L4 P
    [3 k4 ~! v/ a1 Y$ w% B$ S
        <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>
    5 o3 s8 ~. t- X, w3 R( E# b2 P& K]
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-29 03:11 , Processed in 0.653743 second(s), 86 queries .

    回顶部