本帖最后由 lilianjie 于 2012-1-4 17:59 编辑 9 D2 S$ _. N4 c2 o. O
( J9 y$ G+ L1 Z. y& P6 LQ5:=QuadraticField(5) ; . u9 `- F5 k- D9 f* Q6 S$ H$ o( qQ5; # \% w o Z8 S v4 D# W, ?8 ?( VQ<w> :=PolynomialRing(Q5);Q; : Z6 U3 h8 r" w. x7 O5 K1 t8 C3 @% w* h7 j7 U4 h
EquationOrder(Q5);. M( ^/ @$ S6 E$ h
M:=MaximalOrder(Q5) ; , G, Y: q5 {# n+ n! D9 zM;7 C( U+ [0 i! i( _, N, D
NumberField(M); 9 M$ l% B" Z# j1 y/ AS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888; `* z. E$ R5 I
IsQuadratic(Q5);IsQuadratic(S1);IsQuadratic(S4);IsQuadratic(S25);IsQuadratic(S625888888); 8 u/ M% H) \0 m$ F3 @% hFactorization(w^2-3);# o) O* R$ }7 p7 y: M/ _ r7 i
Discriminant(Q5) ;0 W7 g; ]9 g4 D. @3 k7 s
FundamentalUnit(Q5) ; ' S" [$ a. B, j1 o2 R2 Q* n7 nFundamentalUnit(M);) C. b/ Z u3 g) j [) b
Conductor(Q5) ;& x3 x7 r6 Q4 _8 M- S7 n2 |" U: A7 g
Name(Q5, 1);! B3 S& [: c5 ?* `
Name(M, 1);7 G# j6 [" ]; J4 p. a" m
Conductor(M); ' J- {; e# _0 a: U% s, e6 fClassGroup(Q5) ;6 Y, c0 z/ o0 w& j
ClassGroup(M); 7 l6 v" O/ l/ y: a0 M/ T. J- n- ?ClassNumber(Q5) ; % K6 G7 b9 H2 V9 c6 s, X% ZClassNumber(M) ;8 m% l o" H$ t: b. O# L; F
7 [$ t3 A2 i Y7 j- b) W1 Y
PicardGroup(M) ; 6 x2 Y: j0 P+ b v4 PPicardNumber(M) ; * G* H1 e' F) C9 a. g9 E% b" Q# x" Y
/ @: h5 u1 p" E" W
QuadraticClassGroupTwoPart(Q5);4 L7 R3 y# ?: H" M/ P
QuadraticClassGroupTwoPart(M); , s$ q1 F q! C + t/ w5 R! J1 f9 r9 Q1 _; Z1 z- V' G5 f, O1 Y! E
NormEquation(Q5, 5) ;2 D9 U+ r% z" c, c
NormEquation(M, 5) ; % U1 M7 e9 k# g3 @ % Z. b5 H+ P% P8 O% ?& S* u: b; Z' {3 B
Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field 1 s# G5 E; ]: k/ CUnivariate Polynomial Ring in w over Q5 - A) p1 c' A& G7 k% xEquation Order of conductor 2 in Q53 {% H( J `) R. P% ~/ T4 f
Maximal Order of Q5 # f" V5 g2 R4 o4 D3 fQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field8 F& [* H* `) n
Order of conductor 625888888 in Q5 3 a1 N- q f0 S9 q3 }! s, M, Y# gtrue Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field6 S) s0 s; ]) ~7 n# a
true Maximal Order of Q5 # ~1 U7 R5 p* _9 a$ o+ r& ~/ h0 Ptrue Order of conductor 16 in Q5 - M; ]6 [4 A. |5 V6 E8 r; X( Itrue Order of conductor 625 in Q5 % _3 L! Y6 u J+ U6 S0 I% p O0 H/ Vtrue Order of conductor 391736900121876544 in Q5 + P2 g4 |( o* T8 j/ m6 K& \/ ~3 o[ 7 Y5 M/ m7 C: T <w^2 - 3, 1>- A9 J A; s5 K% h# @% N
] 7 u) w! L6 F, T9 I5 * A6 W+ A( B1 G' ]6 c8 A1/2*(-Q5.1 + 1)& _/ E7 F$ f k, `7 y. _
-$.2 + 1 " X" B% t; g5 g- z5 \" s5+ P5 D+ y/ o2 Q0 b H F; s
Q5.1 3 m+ r0 \' a0 j6 ^" F$.2 , \1 t) e7 O4 l/ H3 H1) B9 o; x9 s( s( }6 @" V' @/ Y
Abelian Group of order 1 7 h+ c; r: B* ^0 GMapping from: Abelian Group of order 1 to Set of ideals of M1 Y5 }3 f% S3 A/ U. G0 U
Abelian Group of order 1 : B9 E5 ]! F" L+ D; M2 [Mapping from: Abelian Group of order 1 to Set of ideals of M B1 d6 x: M+ Y+ m( }8 a+ u: W
1 $ Z$ a" X, J6 F1; Z* _) D; R. v5 L0 t
Abelian Group of order 1+ y$ c& B/ N! m. C" X
Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no2 f8 ]. a. m/ V$ w
inverse]/ ^% G* u7 i o% q/ l; R4 C
1) W( F: C7 @8 B& S
Abelian Group of order 17 B" |+ u2 m3 Z6 I/ H
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant) c; Y5 }7 A8 r/ W
5 given by a rule [no inverse] 7 ^ S0 V9 ?* n% Q2 S4 Z& cAbelian Group of order 1- o: \0 d" S) `# y1 a7 B
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant; _# }5 p+ {/ {& M
5 given by a rule [no inverse] 7 Y9 j) L* [- r: Strue [ 1/2*(Q5.1 + 5) ]# N# D0 W0 i7 ~+ g
true [ -2*$.2 + 1 ]# ?9 X6 s# M0 r# U( z
. a0 i9 K2 b: x- _' m( Y
) v9 J* L# I8 k6 O9 [! d l) d( B- z- o7 C; _
- E- u& ~9 R3 k# m) [0 a" ]2 F; v( M/ ~) n5 h @" a
* z5 p; i2 n/ W! h% L) Z
% t8 p& R2 ^ E# S4 J: x# z3 N
- u6 w! \( u. ]5 }4 i) `' e% G
' a" Q5 a" E6 `/ X% f* {4 L- ^! h8 V% d Z# ~8 S
==============5 C) |, }! |1 q: k* S& j
- F; Y+ }1 n( \; H* XQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field' _, `" s X8 u- N0 S# c% ?$ E
Univariate Polynomial Ring in w over Q5 $ `) O0 o& L# J$ V7 t( _Equation Order of conductor 1 in Q5# z9 {+ l R W
Maximal Equation Order of Q50 M7 W; q4 h8 @; k7 S g3 W
Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field * Z% n- W; G; t1 L1 dOrder of conductor 625888888 in Q5 : E" q7 Y* c$ xtrue Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field _: [ v: j; ]' k$ x! }; M+ _true Maximal Equation Order of Q5 7 O5 C! k6 ]0 d5 s6 o$ R; [true Order of conductor 1 in Q5 ! Z$ M7 e' l/ W4 t8 v- J6 Q% Dtrue Order of conductor 1 in Q5 1 z$ B' x# X3 @ Ytrue Order of conductor 1 in Q5 * J$ A U5 h* A; l- T[ $ i6 Z( b8 G' E. s5 i0 z9 h6 T' ? <w - 5*Q5.1, 1>, + k. ?' b/ v. Q <w + 5*Q5.1, 1>; z% g$ Y D, K
]: V" H* ?+ j1 j, g; `
8 {9 V2 a& g) S1 Q
Q5.1 + 1' ?# K8 v9 e9 Y( J) a
$.2 + 1 , q6 m, H+ [' Y$ @, V88 i. N, d5 T1 z) G/ @
0 v, S& @/ d2 a7 V, D, D a
>> Name(M, 50);3 L/ _ I) I Q" j( a
^$ L' V$ e' V; ? J5 o
Runtime error in 'Name': Argument 2 (50) should be in the range [1 .. 1]! t. f m+ I4 V7 k' _/ i+ |
9 Z2 u' u8 p; ?/ v0 `; D$ X/ ^1: {$ p* z0 _6 V; ?0 j P- t7 o) F
Abelian Group of order 1 q+ e# `- T1 [6 [* G- A7 Q/ [
Mapping from: Abelian Group of order 1 to Set of ideals of M! f# [8 r, f, e. Z. a' I- @/ n* V
Abelian Group of order 1 $ t5 K7 I+ L* uMapping from: Abelian Group of order 1 to Set of ideals of M7 M3 S0 a) v6 Z
1, t' w# I* `8 e. g
1 - a0 e( t8 M# u) f1 ^; j/ UAbelian Group of order 1; ~: v# L/ t" J' M4 V
Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no+ o4 D x/ o0 K) H2 q4 e; @( o
inverse]; O& P, \; K# s! n3 f- `* x
12 W9 R+ ~3 h, Z
Abelian Group of order 1 3 c" i b3 u1 `5 l2 A D% g9 BMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant ! A0 z5 h, R! g8 b8 given by a rule [no inverse] ! u0 I3 T: U& p8 S: {Abelian Group of order 1! F Y4 P+ D) h+ \
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant . B7 ?2 |( }% D8 given by a rule [no inverse]/ }+ D% p7 D3 u' h6 H; B% x( i
true [ 5*Q5.1 + 10 ] . f n) W8 l: wtrue [ -5*$.2 ]