- 在线时间
- 0 小时
- 最后登录
- 2009-9-29
- 注册时间
- 2009-8-12
- 听众数
- 7
- 收听数
- 0
- 能力
- 0 分
- 体力
- 2 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 15
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 28
- 主题
- 25
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   10.53% 该用户从未签到
 |
%标准粒群优化算法程序8 o( x5 A! N$ H; d. j
% 2007.1.9 By jxy
$ H5 V9 L0 D. T g" i" p%测试函数:f(x,y)=100(x^2-y)^2+(1-x)^2, -2.048<x,y<2.0486 u- {9 e: z* n, o( B V8 L
%求解函数最小值
9 u! e( p* f" P) ?6 `, b
% r2 A0 G! o1 Z' ]% T( U/ o+ r; I6 rglobal popsize; %种群规模: |. ~' q( D b2 W, }+ x! A
%global popnum; %种群数量 t. V9 W0 `8 E0 V s) k
global pop; %种群* f8 g$ }8 Q, {' x* b! o' @! M
%global c0; %速度惯性系数,为0—1的随机数
W, }& B- L* J, xglobal c1; %个体最优导向系数# Y4 ?. M! m* q! i4 W* A# r/ G4 w
global c2; %全局最优导向系数
* `; o7 h- k4 B& p) pglobal gbest_x; %全局最优解x轴坐标& R% t$ G8 o; X
global gbest_y; %全局最优解y轴坐标* o, A2 p% m5 `6 b; O4 R) ?& J$ [
global best_fitness; %最优解
: d) x( [$ S' ?9 T$ z" Z% \! N \global best_in_history; %最优解变化轨迹1 \' {6 V' o4 d& _0 Z" J; {8 I
global x_min; %x的下限1 J; d! O. {% c
global x_max; %x的上限, ~. z8 }5 n5 l) ]+ y7 e
global y_min; %y的下限
/ M$ T. k. x6 g" Q( iglobal y_max; %y的上限# v6 I3 B# G: N v! D6 i! t8 {1 D4 k" G
global gen; %迭代次数* P0 ?; b$ Q5 W. y8 |. T! I
global exetime; %当前迭代次数2 F2 b' h% s' i* \7 G8 N
global max_velocity; %最大速度/ v: I$ G3 C" K2 Y0 T& k
$ R% Z+ y- m* u! q( finitial; %初始化
% R! B6 J, G# p7 }
0 x7 L7 w/ b9 V# C' I, pfor exetime=1:gen
: B- n* c( F0 E0 N' w* c0 Doutputdata; %实时输出结果
5 [% M% x, |( Oadapting; %计算适应值; n5 p. ]0 N& E- ?
errorcompute(); %计算当前种群适值标准差2 B0 A* _) [6 s' ]: L$ \
updatepop; %更新粒子位置7 q9 x5 `$ d9 C9 p9 p' m" q
pause(0.01); K6 f# n5 x) f+ f1 M4 | ~9 ~
end
- q. c+ s6 a; u* B) w! Y
! m. t; @* v' S/ aclear i;
/ G3 B% C Z% Xclear exetime;9 y% ^; I0 E- j3 j! q p4 B
clear x_max;
& y7 X# w7 |5 C" Q/ ]clear x_min;, F1 O# O1 }/ n2 l6 p, |
clear y_min;
' `' j3 n. F2 eclear y_max;
5 v& A2 C8 [' D
5 [1 m: F2 [! A! y, C9 k5 k4 [%程序初始化! r# k) c1 D9 h, ~" T8 m5 r- L
2 M# e# N B ]1 o8 R
gen=100; %设置进化代数
4 L5 G0 I( A8 X! npopsize=30; %设置种群规模大小! e9 ~$ y2 M1 S& b" U
best_in_history(gen)=inf; %初始化全局历史最优解( [0 P; o$ {0 v7 B6 ?; V
best_in_history( =inf; %初始化全局历史最优解8 [0 `- c" f" w, R, U
max_velocity=0.3; %最大速度限制
7 }5 _% Y0 u B+ `: Bbest_fitness=inf;! i1 X, J2 ^6 n0 M4 b' W+ G
%popnum=1; %设置种群数量
% u% g0 i7 Z& p7 s: I. \3 u2 j1 g! w/ a7 i
pop(popsize,8)=0; %初始化种群,创建popsize行5列的0矩阵: p* k/ f! x( L4 _" X. p
%种群数组第1列为x轴坐标,第2列为y轴坐标,第3列为x轴速度分量,第4列为y轴速度分量) D( F4 R! y7 t6 r1 o3 K% x
%第5列为个体最优位置的x轴坐标,第6列为个体最优位置的y轴坐标
2 s/ V' R: L" y%第7列为个体最优适值,第8列为当前个体适应值
/ N( T$ k; C$ y( F: J! V$ U2 B% `5 T' N9 u2 S9 t
for i=1:popsize$ o" M! f% K) k( d3 V9 V
pop(i,1)=4*rand()-2; %初始化种群中的粒子位置,值为-2—2,步长为其速度7 ]# I% F% B& s. |- A' `
pop(i,2)=4*rand()-2; %初始化种群中的粒子位置,值为-2—2,步长为其速度9 g# D; b& O0 R$ Z w5 u/ S, }
pop(i,5)=pop(i,1); %初始状态下个体最优值等于初始位置
$ _4 ~2 _3 t, Wpop(i,6)=pop(i,2); %初始状态下个体最优值等于初始位置
# L- }# z0 U, Q9 W& n% ?" X. kpop(i,3)=rand()*0.02-0.01; %初始化种群微粒速度,值为-0.01—0.01,间隔为0.00010 Q: [" ?* l9 N' w
pop(i,4)=rand()*0.02-0.01; %初始化种群微粒速度,值为-0.01—0.01,间隔为0.0001
: X$ E3 |; c7 Q& d* f+ |+ ]pop(i,7)=inf;
7 U0 U& `/ }! d$ O/ H9 _5 g( t6 ppop(i,8)=inf;0 W1 R5 x4 a1 k- m- B
end. S$ X" K7 \8 w4 B
9 d' |" C1 j/ z* }: I6 {
c1=2;
% [* k6 h/ h7 R% u% J5 v8 _c2=2;& B, i7 r/ d& Q( Y& X* E/ C- ~
x_min=-2;0 o, A. X( G, K
y_min=-2;
% |6 X( Q+ D( H& w2 c9 i* p; s; fx_max=2;
' P$ F- H$ A' [0 Uy_max=2;
% S K" }/ o. p. i$ S7 ?8 s8 E' \* m5 Z$ R/ o8 V' ^* I2 B
gbest_x=pop(1,1); %全局最优初始值为种群第一个粒子的位置
% x* Y+ }6 T4 `- A7 rgbest_y=pop(1,2);
+ r3 v5 l$ J' m+ x! _- `" P# ?1 r% d1 x) ^
%适值计算3 _, B4 A# G* m# B
% 测试函数为f(x,y)=100(x^2-y)^2+(1-x)^2, -2.048<x,y<2.048
! ^2 e7 J5 e1 n+ n4 M. T* {1 F( m
%计算适应值并赋值
& x/ L! _) \0 t% A. P6 i6 {. xfor i=1:popsize$ \+ }' _4 O4 |. {
pop(i,8)=100*(pop(i,1)^2-pop(i,2))^2+(1-pop(i,1))^2;; z) ^# V. C1 X& e
if pop(i,7)>pop(i,8) %若当前适应值优于个体最优值,则进行个体最优信息的更新. y; @5 N% }5 M0 N p1 m. Z! U
pop(i,7)=pop(i,8); %适值更新! x& |' c, }: P- T0 ~2 _# }
pop(i,5:6)=pop(i,1:2); %位置坐标更新% B( v8 z$ f1 c# o5 L
end
' Z) Z: B- {0 }# D8 aend- W! P8 @9 k$ l1 F: Z
6 [ W& E1 T' r" R) n& E6 A, ?%计算完适应值后寻找当前全局最优位置并记录其坐标
+ I1 h. P& }, u& Zif best_fitness>min(pop(:,7))9 r. j$ |6 C7 M$ |4 k! A
best_fitness=min(pop(:,7)); %全局最优值( a) h! ?1 _1 a7 ]# P* h" A2 R
gbest_x=pop(find(pop(:,7)==min(pop(:,7))),1); %全局最优粒子的位置' e% h* T7 I) o* k+ t7 [- V5 w- r
0 r( s3 D/ H' x' zgbest_y=pop(find(pop(:,7)==min(pop(:,7))),2);
: H, G! a5 L6 K, q+ Iend
2 W6 l7 B5 N9 Z$ U2 V7 d3 V, B( x8 j3 O4 l. M& J) |
best_in_history(exetime)=best_fitness; %记录当前全局最优
( l4 k0 b% T$ T: _& ^5 R# J1 Z" ^2 M5 P6 T/ C9 _
%实时输出结果& A; _6 i: ]7 x3 K7 i5 z5 K0 o% ~) Z) ^
6 V% h; k w' s+ [" U
%输出当前种群中粒子位置
0 h) H. N4 f1 ?subplot(1,2,1);$ m8 |1 a3 @' K& A) {* m& w# g
for i=1:popsize! ]- G+ k% H" U
plot(pop(i,1),pop(i,2),'b*');
/ Q A1 o7 N" j0 b( phold on;/ Y5 k; Q* d" u+ b" M
end- v: n o8 @" q: r: ]
/ E! x" ?9 T+ O# Z* oplot(gbest_x,gbest_y,'r.','markersize',20);axis([-2,2,-2,2]);7 \" n9 U% k5 P" O
hold off;
S5 Y& _0 w: d: w ^+ O! z' S- |7 R& b8 i6 k( J4 i
subplot(1,2,2);
, i/ I }1 [1 e0 b6 ] oaxis([0,gen,-0.00005,0.00005]);
. Y0 ]4 ^, y4 U/ \9 n- G
: o1 q" {! F* Q0 q& ~if exetime-1>0
* X, ~3 q; F* g( g4 d! X& o) `line([exetime-1,exetime],[best_in_history(exetime-1),best_fitness]);hold on;
, ?$ ^# }( `2 Uend5 j' B, [8 R8 L' e& s! h& G& b! b
( ~4 |; a( F$ Q o
%粒子群速度与位置更新
1 v0 r3 D$ U' w6 }2 V. K- I; o6 g) l: A0 w4 R2 ~
%更新粒子速度
. {9 O1 e' B) S0 D+ Tfor i=1:popsize
6 q; u. P% I2 B1 c) p6 Qpop(i,3)=rand()*pop(i,3)+c1*rand()*(pop(i,5)-pop(i,1))+c2*rand()*(gbest_x-pop(i,1)); %更新速度
1 o) D8 ?7 \' [$ v$ d( i% a5 p+ v8 gpop(i,4)=rand()*pop(i,4)+c1*rand()*(pop(i,6)-pop(i,2))+c2*rand()*(gbest_x-pop(i,2)); + J8 H5 f; w4 R
if abs(pop(i,3))>max_velocity6 E3 M( q [- d1 V: e0 t& `' J/ a* q
if pop(i,3)>0- b$ K: i/ d" T4 f2 V6 C" z
pop(i,3)=max_velocity;
5 n' R: u6 c/ `+ v8 Kelse& e! p1 V1 v1 t) I- V4 V" C r/ r
pop(i,3)=-max_velocity;
0 }' [ }9 J: t: R8 c; }end! U" R; n- U- r5 X3 v0 B: u
end2 `6 K/ w. }( f
if abs(pop(i,4))>max_velocity7 ?/ |$ Q! ]$ Y4 c1 h
if pop(i,4)>0
8 q& b2 O5 i2 I% j+ Gpop(i,4)=max_velocity;
3 o n7 e0 S* ]else. a; T0 S v' k6 z6 X4 G" |1 M* D4 x
pop(i,4)=-max_velocity;: c- r9 A% G' L$ P4 Q
end
* e1 t) G, u* S6 P- zend
% @5 v8 J& O; }" C7 N% m5 z: |end4 Z% [/ w: |1 C
0 ^* d- ~0 O) ?0 T" b0 g5 v' d* p%更新粒子位置
/ X8 h- p+ r' R) G2 Yfor i=1:popsize, w, a& L/ k; r$ x* d
pop(i,1)=pop(i,1)+pop(i,3);
! p) ~: R$ w' I; s% D5 wpop(i,2)=pop(i,2)+pop(i,4);9 x K7 {2 n$ s, Q1 F
end
Y, O6 Y2 g* O& Y3 a 4 d; l. E+ C( P
1 z8 Z! Z1 k. e! E" o
2 V2 u# @1 }" b9 S2 x. F5 Q ! H1 t$ {2 Q6 B' J" D; Q# ^
" R: P' _, s1 u2 e( @$ V- i
6 t) f$ B& s1 M1 z9 A0 P9 t& \
1 }) t' [ c' v1 f- }5 Y/ A : s* b: \" g/ Z! D
+ R' j7 k! g/ C
6 o& c/ V- D) A4 H/ W# G, V / R6 T$ K( s# j) E+ S( T
1 \& M5 U0 F6 k4 T6 z; T
% I' K' L. @9 c) F X# Z3 d& Y7 J& M( M3 _# g+ E4 f
1 ~& p5 Q3 c* `, O+ W
% |7 n, K& C. M* H- p 5 {% l: _* F2 a7 `4 B
% A SIMPLE IMPLEMENTATION OF THE
& Y% T1 M7 {) y% Particle Swarm Optimization IN MATLAB9 |3 t) G% _! f/ L. {
function [xmin, fxmin, iter] = PSO()1 c: x7 E w$ @) \
% Initializing variables$ z- l+ _% X4 F
success = 0; % Success flag
! C3 d1 m- i4 L4 A5 L( Q7 ~$ ePopSize = 30; % Size of the swarm; Y! y8 V- s% F% }. S! {4 x2 I
MaxIt = 100; % Maximum number of iterations8 ~4 p6 p. D x7 _
iter = 0; % Iterations’counter9 N3 ~; T+ }3 E+ g7 s& _
fevals = 0; % Function evaluations’ counter1 X1 _1 b9 u, u; L2 t, j) U- _
c1 = 2; % PSO parameter C1
6 z* f' D9 a. _6 Z' lc2 = 2; % PSO parameter C28 x( ]3 R2 `% q& g Z8 u
w = 0.6; % inertia weight
t1 n3 [$ s! o( M % Objective Function* _' C7 L8 S: t3 J
f = ^DeJong^; 2 E: ?/ F0 ^3 F, h. h/ b
dim = 10; % Dimension of the problem
3 I; f. M+ |) M3 ^0 hupbnd = 10; % Upper bound for init. of the swarm/ D1 j1 [6 a* g8 p
lwbnd = -5; % Lower bound for init. of the swarm1 O2 I0 K2 t$ ^, K: v) P2 R) Q
GM = 0; % Global minimum (used in the stopping criterion)0 D g" U5 ^% ~- |( X
ErrGoal = 0.0001; % Desired accuracy$ Y: o3 s5 h7 n$ q' h. f$ x1 E
B P9 ~- B$ p) b4 d2 T% Initializing swarm and velocities+ Y1 L, Q$ }. l) d
popul = rand(dim, PopSize)*(upbnd-lwbnd) + lwbnd;3 n! F, h2 M/ P7 N, A) @7 L
vel = rand(dim, PopSize);
% ^. \1 O/ _& Y1 F' d& n r+ f6 l3 N2 i T3 @
for i = 1 opSize,
/ C* |' R' S. t9 w" R5 v& D# D! [" l2 B fpopul(i) = feval(f, popul(:,i));
5 \/ K% d# t$ }( ^ fevals = fevals + 1;8 t6 n7 R' X! N* {. B, J0 F P
end( p, X% m0 Y& O# `
9 M( k5 h# t) Z* Q/ O/ a
bestpos = popul;
# c, B# }* _0 o' T( J: x8 Yfbestpos = fpopul;+ r7 m, @9 W3 _ F! m' |
% Finding best particle in initial population) A& ]7 T1 Z1 x& P3 U' f; ~9 h
[fbestpart,g] = min(fpopul);
7 `1 Z( J4 @ M& ^4 v% g& Tlastbpf = fbestpart;; s( |$ ? g2 K J* h$ d& n+ p
' e% h, Z) c C! E+ a8 awhile (success == 0) & (iter < MaxIt),
3 a8 v" ?1 S! f! I, @ iter = iter + 1;
3 g/ j& \4 Y$ D+ B2 Z' E$ ?9 Z* c% V f$ r" A9 b9 T+ F
% VELOCITY UPDATE
) ?7 L) `' P2 c for i=1 opSize,, ~$ `/ _( @' {+ P
A(:,i) = bestpos(:,g);
! i5 O3 m0 ?7 e" I end+ p$ U Q* o$ ]- n4 k) b
R1 = rand(dim, PopSize);! E. F+ D$ G) O
R2 = rand(dim, PopSize);. p' J1 m2 G6 Y& }/ K
vel = w*vel + c1*R1.*(bestpos-popul) + c2*R2.*(A-popul);) Y7 }* }5 |: r
$ }% s% W- u8 b' n
% SWARMUPDATE r$ F% y6 L* L9 I
popul = popul + vel;
" R" l7 y( }9 V. s % Evaluate the new swarm0 f" x6 i% m6 A- D6 X+ k
for i = 1 opSize,
/ M" G! _- X$ w p5 r fpopul(i) = feval(f,popul(:, i));
+ }7 Z0 \- _# b: _3 S- ` O fevals = fevals + 1;3 E) P. v+ L% L5 Y
end$ z' ]; r: x* j3 h2 B/ c" F
% Updating the best position for each particle
( K# l4 ^$ u# r' L1 Q changeColumns = fpopul < fbestpos;
. _8 a' L U, N1 W% r fbestpos = fbestpos.*( 1-changeColumns) + fpopul.*changeColumns;
& |/ c8 f1 \- W/ E p* ]" {- ^ bestpos(:, find(changeColumns)) = popul(:, find(changeColumns));
% q! R6 }7 ?7 x % Updating index g
( {9 Y" b, t; \5 e' c4 ^% Z [fbestpart, g] = min(fbestpos);. @" \. J: j& S5 A: ^
currentTime = etime(clock,startTime);
+ O3 N4 W- f$ v4 J' | % Checking stopping criterion- }1 E3 d* n4 d# ]; x! a
if abs(fbestpart-GM) <= ErrGoal! j: i7 f3 }0 Y% L* Z2 N
success = 1;: l" _6 `& y% O) H6 B% _( X o
else
& q$ ]# n! d. I1 Q lastbpf = fbestpart;, B' O: Q9 x- s# [" z
end9 \- v6 x8 r: i2 s. I; r/ V! d
8 F. y, A% ?# D( J2 Xend
5 E. z& t8 ? g$ ~
% f9 y' F( V& p- a4 ]% Output arguments. ]) Y$ l, e. z5 H
xmin = popul(:,g);' X& j' g" n) ~- j! i- w+ `
fxmin = fbestpos(g);& ?2 ~1 d* ` ?$ j; y+ ?! W
/ ~) Y# P- X5 q4 s3 A( ufprintf(^ The best vector is : \n^);8 }7 |2 L: n; q2 o. N$ _- ]% {
fprintf(^--- %g ^,xmin);: N+ T$ s/ R$ ?, c& z
fprintf(^\n^);5 r! i* |% R9 U- w
%==========================================! I( Y+ [# b6 B- b
function DeJong=DeJong(x)
4 U5 e" j+ n/ ?( K3 m( RDeJong = sum(x.^2); |
zan
|