QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4118|回复: 0
打印 上一主题 下一主题

请问FindRoot外面套一个For循环的问题

[复制链接]
字体大小: 正常 放大

4

主题

10

听众

29

积分

升级  25.26%

  • TA的每日心情
    郁闷
    2015-6-6 15:06
  • 签到天数: 5 天

    [LV.2]偶尔看看I

    邮箱绑定达人 社区QQ达人

    跳转到指定楼层
    1#
    发表于 2015-6-2 12:57 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta |邮箱已经成功绑定
    1. lamda = 1.55 10^-6;
      \" x( n1 E; o! k9 F
    2. k0 = 2*Pi/lamda;; j/ G\" J\" `* ]; B9 g
    3. n1 = 1.4677;(*纤芯折射率*)
      / d( L- R+ d9 L
    4. n2 = 1.4628;(*包层折射率*)/ u& G. p5 n: E: a# [, `# K) X  I
    5. n3 = 0.469 + 9.32*I;(*银折射率*)
      0 D. x: |( v, R- P4 I2 R/ u) Y
    6. a1 = 4.1 10^-6;(*纤芯半径*)
      2 S) i2 ]; v0 h  c, v
    7. a2 = 62.5 10^-6;(*包层半径*)2 A! K- k$ \' K' `$ y
    8. d = 40 10^-9;(*金属厚度*)1 B4 @: n7 V6 f8 N6 `
    9. a3 = a2 + d;6 R$ O5 U$ P% ]- q% l1 Z; M* q
    10. mu = Pi*4 10^-7;(*真空磁导率*)
      6 f/ q! W$ R' c. h9 K/ h
    11. epsi0 = 8.85 10^-12;(*介电常数*); T+ }1 q6 p, ]  Z4 [3 [3 n
    12. ; L, ]& D. T/ B7 A* t
    13. n4 = 1.330;
      0 H: E& f/ H5 H% D- j

    14. - o4 m) t6 \- R7 `# T- T2 d: B  R
    15. neffcl = neffclre + neffclim*I;
      4 x# k- J% K* e# A/ d: f, [9 Z

    16. 2 n' U1 y1 V8 W' ]! L+ W- k
    17. betacl = k0*neffcl;/ m$ Q. K. }  F  S5 T
    18. omega = 2*Pi*299792458/lamda;( l7 N+ e3 ?$ ?) D/ y
    19. 0 k8 U# u5 \0 T0 q0 l( h. N* \' P
    20. epsi1 = n1^2*epsi0;
      ! f7 F, P* }/ y9 k5 X
    21. epsi2 = n2^2*epsi0;& P% [/ Y1 b% ^8 k+ n/ o
    22. epsi3 = n3^2*epsi0;6 a% K7 M& H+ I5 T! K1 M- d: @
    23. epsi4 = n4^2*epsi0;/ A' e% P\" E: b

    24. ; J! g, E1 j9 M8 I
    25. u1 = k0*Sqrt[neffcl^2 - n1^2];
      / Z- A2 w7 M: b: a
    26. u2 = k0*Sqrt[neffcl^2 - n2^2];
      - i\" |\" B+ f4 H/ b+ \! L7 d* l  z- j
    27. u3 = k0*Sqrt[neffcl^2 - n3^2];
      \" {- V* ^8 |$ T# Z/ c2 h
    28. w4 = k0*Sqrt[neffcl^2 - n4^2];
      7 T7 m\" `- t  P7 i3 @

    29. 1 c1 ?9 P! Q6 @/ R) P* a
    30. Iua111 = BesselI[1, u1*a1];3 k2 ~% f, @) e. g% G5 m0 p
    31. Iua121 = BesselI[1, u2*a1];
      * L- r) G/ t( u1 z: Q6 I
    32. Iua122 = BesselI[1, u2*a2];
      . F/ d+ ]* }: {( @! S/ `( _5 r
    33. Iua132 = BesselI[1, u3*a2];
      % G+ ^9 c$ d4 O1 y; f* w
    34. Iua133 = BesselI[1, u3*a3];
      ; p, q8 \: H6 p' \
    35. IIua111 = (BesselI[0, u1*a1] + BesselI [2, u1*a1])/2;
        [) D% t. o- f9 g  O\" E
    36. IIua121 = (BesselI [0, u2*a1] + BesselI [2, u2*a1])/2;' [3 W/ N) u) x
    37. IIua122 = (BesselI[0, u2*a2] + BesselI[2, u2*a2])/2;
      7 b/ H; B: f9 G) A7 S( S
    38. IIua132 = (BesselI[0, u3*a2] + BesselI[2, u3*a2])/2;; A% Z2 o' s4 M\" q( ?
    39. IIua133 = (BesselI[0, u3*a3] + BesselI[2, u3*a3])/2;
      4 t4 b8 _/ C7 A* [, C- k* ]( \

    40. 4 Y5 f: }& J7 q7 _
    41. Kua121 = BesselK [1, u2*a1];4 W1 G8 `- x6 V7 W4 g, a
    42. Kua122 = BesselK [1, u2*a2];
      # q# ~4 X, V( c$ U! O
    43. Kua132 = BesselK [1, u3*a2];% t( b8 d6 }4 j( M  N) g
    44. Kua133 = BesselK [1, u3*a3];
        m8 u  C8 f( W) S+ ~' Y! i. c
    45. Kwa143 = BesselK [1, w4*a3];. Q9 z; M# G5 Z6 V
    46. KKua121 = -(BesselK [0, u2*a1] + BesselK [2, u2*a1])/2;5 R\" h6 p8 O; q/ a( y
    47. KKua122 = -(BesselK [0, u2*a2] + BesselK [2, u2*a2])/2;7 v4 L\" l7 V! @! o1 O4 n6 d& E2 b* C1 f
    48. KKua132 = -(BesselK [0, u3*a2] + BesselK [2, u3*a2])/2;
      6 b: x/ I' U+ Q2 ^: x# d+ U4 l
    49. KKua133 = -(BesselK [0, u3*a3] + BesselK [2, u3*a3])/2;
      ) D6 s' `3 w( I  B, m
    50. KKwa143 = -(BesselK [0, w4*a3] + BesselK [2, w4*a3])/2;
      : p! _\" `6 l- D& Z# b# E

    51. 2 l6 c. u8 h/ Q. s+ {
    52. H1 = (betacl*Kwa143*
      ! C$ ~; Q* ^) k: |' U
    53.       Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*7 {& z; ?+ k' S
    54.        Kua122 - u3^2/u2^2*Iua132*KKua122) - (betacl*Kwa143*) I2 o5 S& }, T\" L* H- ^' J9 ^  [4 A
    55.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*! x9 E. p) U  |, q* Z
    56.        Kua122 - u3^2/u2^2*Kua132*KKua122) + (betacl*Iua132** n2 s6 e+ p% F: ?8 \- \
    57.       Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
      9 z% Q! K7 k$ u5 }! R
    58.        Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*' ^' b* x1 H6 t1 l' b
    59.       Kua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
      / f8 c/ J0 I( ?6 J3 |  J8 _
    60.        Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);, y/ i- |$ T  v0 n

    61. % y0 T4 E' G+ [* ^
    62. H2 = (betacl*Kwa143*
      0 x8 h1 `, m) H& s
    63.       Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*
      # u% T2 J- v7 B! t6 Y- a) }9 h- j& X
    64.        Iua122 - u3^2/u2^2*Iua132*IIua122) - (betacl*Kwa143*- m- Y7 e\" f. r7 h
    65.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*
      & Q0 D) ^7 G( z& D' N; k
    66.        Iua122 - u3^2/u2^2*Kua132*IIua122) + (betacl*Iua132*
      ; H+ p/ ^9 Y7 U9 x
    67.       Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
      1 S3 s) @6 U% O$ o# ]
    68.        Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*
        q( }* e. N, U
    69.       Kua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*2 w0 [. N. a! s3 A, T% D1 t- K# s& e
    70.        Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);, h! S\" A' u( H$ z7 F3 U

    71. ; i; N0 f# w: L3 E
    72. H3 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*# p1 B, H/ ^\" i5 u  n/ t% p\" O# n' ^
    73.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
      . M) h, X0 Y9 Q6 N9 U/ j& k, ?
    74.       Kua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*
      + q) t8 o2 Q! Z; R) S
    75.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*: y% U1 E# w\" ~: w! o  o( m0 @
    76.        Kua122 - + p% a  C\" M) r+ b/ j/ {+ q' j% f; ]
    77.       u3^2*epsi2/u2^2/epsi3*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 - 7 ?) |9 C* D* L4 D' ?\" m
    78.       w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 -
      # n\" [! [$ ]6 ^. l2 s2 P& h
    79.       u3^2*epsi2/u2^2/epsi3*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 -
      % y+ A5 w8 W! s
    80.       w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);9 ?\" M9 w2 F- {8 l: J: ~. I1 C7 d2 e
    81. $ Z3 p\" m! ^2 t( Z. z6 y
    82. H4 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*
      1 E3 z6 t- j' P: U  g7 P
    83.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
      # u$ l* a- ~! W9 }* W\" m
    84.       Kua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143** _4 W9 T4 Y4 I: n1 D/ X
    85.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*5 ^. l2 P  e& d) F* F
    86.        Iua122 - / h; Q1 [0 X* d0 c
    87.       u3^2*epsi2/u2^2/epsi3*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 - / I# Y- Y( E! X8 e' k\" o
    88.       w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 - \" I6 U& H2 {( s% G% k
    89.       u3^2*epsi2/u2^2/epsi3*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 - 8 Y# j8 m- N7 B5 a& h8 `
    90.       w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
      7 r( a* B( T1 r5 g4 d2 P

    91. 2 L- u3 i- [- F4 p5 C
    92. M1 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*
      ! d6 i3 G1 ~& g, N/ j, j$ k* u
    93.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*; u\" H\" i$ H4 j, |
    94.       Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*3 \6 \8 R) H/ E/ j6 Q8 }3 z' W+ s# @
    95.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Kua122 -8 M  P/ |1 E! N( j+ i& }8 n# i
    96.        u3^2/u2^2*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 -
      * {: C! N4 P- V+ J
    97.       w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 - 4 H3 m9 ]# F. k( B) ]4 t& r
    98.       u3^2/u2^2*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 - , M5 C* ?1 Y2 S5 k2 d; J
    99.       w4^2/u3^2*Kwa143*IIua133);) w' {$ n) c. T+ u( R+ f1 u

    100. . I4 F. S3 x0 D: w: g: h; p
    101. M2 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*1 F5 V& Q, C* ^* @, M
    102.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*# H  @# J\" E$ y
    103.       Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
      . [% `1 `  Y\" a5 a. y
    104.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Iua122 -
      \" k1 g3 k% P\" C1 p$ J
    105.        u3^2/u2^2*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 - ' N6 ^0 H. ^0 c+ c7 R
    106.       w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 -
      : L$ g% D5 o! Z8 y& U% f. i
    107.       u3^2/u2^2*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 -
      / K6 C  m% k# `5 p4 u6 \
    108.       w4^2/u3^2*Kwa143*IIua133);
      ( ~2 s! d, g+ [+ c1 ~
    109. ! ^* d' O7 N' c0 I9 ^
    110. M3 = (betacl*Kwa143*3 M& z- o9 c/ F8 g& }- R$ s
    111.       Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Kua122 -
      / Z! X& H; C  I4 g9 M1 s- ]5 u: h
    112.       u3^2*epsi2/u2^2/epsi3*Iua132*KKua122) - (betacl*Kwa143*
      ! ]7 w/ v2 A1 L8 w7 P. a
    113.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Kua122 -
      ( r  f- R# V& M1 M2 `, c( P( o
    114.       u3^2*epsi2/u2^2/epsi3*Kua132*KKua122) + (betacl*Iua132*
      ' U6 q5 Q( _) J\" z- m
    115.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 - 5 q- f7 I( O0 K8 f* \
    116.       w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*
      + [/ P\" b6 c\" q2 P
    117.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 - & b/ A' J2 g% M/ U! k1 s
    118.       w4^2/u3^2*Kwa143*IIua133);1 [' ^, F, |- w3 T' H4 F* x
    119. / @/ V# W' W2 P, h
    120. M4 = (betacl*Kwa143*
      6 W- C8 W8 w# D: u1 x8 e) N( x
    121.       Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Iua122 -
        j* g: r7 B0 _7 i0 m
    122.       u3^2*epsi2/u2^2/epsi3*Iua132*IIua122) - (betacl*Kwa143*
      # Q) ?  p) z  v. T  m& I
    123.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Iua122 -
      . P- n' e3 B  ]8 k* s
    124.       u3^2*epsi2/u2^2/epsi3*Kua132*IIua122) + (betacl*Iua132*
      . _2 b2 R, o& G: n  ^5 d
    125.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
      , L; w6 d( V0 y
    126.       w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*
      7 T8 J& c( B\" `2 i0 z  ^
    127.       Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
      , N( i+ ^  K+ R2 u
    128.       w4^2/u3^2*Kwa143*IIua133);
      ( ~2 E\" d  _  k+ W0 f. I9 y
    129. & c5 S/ k9 t- {: O
    130. R1 = u2^2/u1^2*Iua121*IIua111 - u2/u1*IIua121*Iua111;
      5 N1 ~0 `2 G/ E$ I\" w( _( I# C
    131. T1 = u2^2/u1^2*Kua121*IIua111 - u2/u1*KKua121*Iua111;
      * j. f' T& j+ x2 C+ ^5 L& G
    132. U1 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;) _% H\" C: [) Q4 Q2 K0 N4 |5 l% ?7 H# z0 T
    133. V1 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;
      0 b0 R' T3 D& x; Z

    134. 9 ^1 A+ N* q9 V# Q
    135. R2 = u2^2/u1^2*epsi1/epsi2*Iua121*IIua111 - u2/u1*IIua121*Iua111;% j\" F+ z* a) s- M
    136. T2 = u2^2/u1^2*epsi1/epsi2*Kua121*IIua111 - u2/u1*KKua121*Iua111;- d2 ?# ^. F0 }# z  S$ r+ k! E( Q4 [
    137. U2 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;2 R# x, L4 E( J6 q1 Z$ B
    138. V2 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;, q! N( N1 L, `9 _

    139. 0 L: R: p8 ~\" _/ J. e+ Q0 U) K
    140. xicl1 = (-R1*H1 + T1*H2 + U1*H3 - V1*H4)/(R1*M1 - T1*M2 - U1*M3 + 0 Y# \- `3 x\" O: Q4 F. j
    141.      V1*M4);( ?* T8 h+ s/ d) ^: U$ P
    142. xicl2 = (-R2*H3 + T2*H4 + U2*H1 - V2*H2)/(R2*M3 - T2*M4 - U2*M1 +
      2 {! v1 F* b/ \7 R9 J, l
    143.      V2*M2);
      6 y, A! E1 [  [) |7 V\" t, X- @
    144. 2 w, z, X4 L$ ~! N* n( k5 L
    145. x = xicl1 - xicl2;
      ' ?; C: `: t' i$ J
    146. x1 = Re[x];\" A! Q\" u4 N7 o, @9 `
    147. x2 = Im[x];
      : S& m, b/ |2 P# h/ v
    148. ) t* k2 n- j8 M
    149. FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];7 O1 `+ x& F/ k+ r7 q+ q' Z1 B
    150. ]0 L* @% a$ v, n  F0 R( Y
    151. 2 w' t6 n4 p8 N! S3 L
    复制代码
    代码如上,结果是{neffclre -> 1.33017, neffclim -> 0.0000172055}) U8 p/ y; s! O8 \) D
    但我把FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];( q$ n$ h2 I" V
    换成- q  D- a. }" H- u& Z' }
    For[i = 1, i < 133, i++, neffclbase = 1.330 + 0.001*i;
    ! v+ b2 f, s5 {2 K FindRoot[{x1, x2}, {{neffclre, neffclbase}, {neffclim, 0.00001}}];4 i/ ]# Z, ?* K4 _1 o
    ]
    " x0 [! ?% i" S( C就会出现
    ' M/ r4 G8 f: @& `  ZFindRoot::lstol: 线搜索把步长降低到由 AccuracyGoal 和 PrecisionGoal 指定的容差范围内,但是无法找到 merit 函数的充足的降低. 您可能需要多于 MachinePrecision 位工作精度以满足这些容差.* B  z- @6 e3 P1 m9 a
    ' P7 y  X( j, P$ S' w0 c
    请问是怎么回事?9 Q- |. d# i6 U! U

    " O) l% ]. p! s) l
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-9-30 22:29 , Processed in 0.472769 second(s), 49 queries .

    回顶部