- 在线时间
- 25 小时
- 最后登录
- 2019-2-18
- 注册时间
- 2014-4-7
- 听众数
- 8
- 收听数
- 0
- 能力
- 0 分
- 体力
- 198 点
- 威望
- 0 点
- 阅读权限
- 60
- 积分
- 106
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 91
- 主题
- 30
- 精华
- 0
- 分享
- 0
- 好友
- 6
TA的每日心情 | 奋斗 2014-12-7 07:58 |
---|
签到天数: 22 天 [LV.4]偶尔看看III 宣传员
 群组: 2014年网络挑战赛交流 群组: 国赛讨论 群组: 2014美赛讨论 群组: 第三届数模基础实训 |
微分方程模型
. q3 D9 Y, w& n: A4 w: `! N- Q: |
5.1 传染病模型7 |1 W ]' W: ^- X5 _$ n. Y5 L% U1 D; I& \1 g: e4 |8 i
本节是解决“传播”、“蔓延”微分方程问题的典例,模型分三部分层层递进:SI(只分为易感染着、已感染者),SIS(已感染者可以被治愈,重新变为易感染者),SIR(治愈后具免疫力,即增加了“移出者”)。可以说从基础模型到一步步递进,是对实际传染病情况的逐渐深入、全面的考虑,而其中的分析十分重要,也是本章分析得最细的章节。其中引入了“相轨线”分析法,是很有力的工具,后面多次用到,这一节有很详细的介绍。
c& {% X7 b. w- l* C! Y 模型改进、建模目的性、方法三者配合,是本节亮点。' F8 K( n2 b$ E$ \/ l
5.2 经济增长模型: t0 I* T t( c# L3 ]- ]1 v
5 ?: Z% V/ M1 G: x/ x w6 Y 通过建立产值与1)资金;2)劳动力之间的关系,来研究1)资金与劳动力的最佳分配,使效益最大;2)如何调节资金、劳动力增长率,使劳动生产率有效增长。5 n8 L. i, \& h" l$ [" {6 w+ U9 @8 s$ \( `4 m
本模型虽然不长,但推导出计量经济学一重要模型——Douglas生产函数。本节给出的模型推导稍繁,但结果简明,有合理解释。9 D4 @: u- p2 K) S- F$ c( r3 S* d; p n' `1 I, y& D* ^- n, E
5.3 正规战与游击战
. y" z8 J+ t: z: k 这一节介绍了历史上用过的、经典的预测战争结局的数学模型,有传统正规战争、稍复杂的游击战,以及混合战。重点在于建模过程:如何描述战争双方的特性,如何作假设。然后用来分析硫磺岛战役。这节很好地体现了微分方程的强大。0 g6 ~% u+ }5 T5 ]% S
2 @& M! @- F2 d3 l! z$ A& M e5.4 药物在体内的分布与排除 s f; G) N5 V7 h1 t1 G
' F3 ` Z" M% U7 d6 @ 本节建立了房室模型,研究血药浓度的变化过程,为制订给药方案、剂量大小提供数量依据。重点在于1)模型的假设:尽管是简化,但由临床试验证明是正确的,可以接受;2)对参数的估计。( C# c! @( h5 T; t! j0 _" c% g$ ]( w9 Y& i& W, B& [
先由机理分析确定方程形式,再由测试数据估计参数。
& ~( W$ h- h1 T2 T& U1 P% r2 Z7 q5.5 香烟过滤嘴的作用6 C& h7 Q+ q" O$ @1 Y: `* k( E* |" H2 d
看起来不易下手的一个问题,用恰当的假设,引入两个基本函数q,w,及物理学常用的守恒定律,建立出微分方程模型,从而构造动态模型。本例是经典的建模案例。8 ?! o" f2 z4 C9 {0 H: N* T+ T% f
5.6 人口的预测和控制- |* {, ?, r3 R" }& @: g
% a( f! g0 r: k 本节模型与之前的区别在于:考虑年龄的分布,即除了时间外,年龄是另一个自变量。过程中重要的是数学公式中,系数、因子的实际含义要解释。) Q6 ^ p. B; J O$ |) F0 \" m0 I5 M0 G( S
5.7 烟雾的扩散与消失
' D! E2 F s' m: O- f 这个模型巧妙地引入了“仪器灵敏度”指标,不仅帮助建模,而且该指标本身是客观存在的,并非虚构,这样更加有说服力。* o! z9 x6 D' \4 Z
5.8 万有引力定律的发现& {) k9 k- J0 k/ N4 j
J d) t7 p! O' k. Q' \/ Y, E+ n 十分有意义的一节。我们初中就熟悉的牛顿万有引力定律,是由开普勒第三定律和牛顿第二定律一同推导出的,这一节再现了这个推导过程。这个模型告诉我们:正确假设+用数学演绎建模=对自然科学研究的巨大作用。我们要学习科学家前辈们如何创造性地运用数学方法,来提升我们解决实际问题的能力。0 v" W! Q3 `% z$ e2 v" }6 V0 u9 k
|
zan
|