由假设得到公式) t g, {& g1 Z8 A1 G
1.We assume laminar flow and use Bernoulli's equation:(由假设得到的公式) ( d- g1 [3 ]/ |5 e. h$ ~( A5 Y8 S8 T* q9 \+ d: l
公式 6 w* c) q# z! v6 q7 x7 \9 ?) j0 \7 @- M8 ?" p8 B
Where& U0 V' e! w% Z q0 M
4 J2 r/ b- K4 X z
符号解释 + _7 R3 r* j; q2 I _& B % a! o) \; L9 O" _$ WAccording to the assumptions, at every junction we have (由于假设)% t2 B7 t% o4 V
3 R! m) ]. i$ f a. ^
公式 + z* t# |+ T2 O8 `' t" q, F& v/ [8 [
由原因得到公式% e! ^7 R7 Z/ c' O4 |9 M% E8 x- n6 {
2.Because our field is flat, we have公式, so the height of our source relative to our sprinklers does not affect the exit speed v2 (由原因得到的公式); 2 L' z) V! m4 Q+ @, @! k0 D0 {$ D% R! f! R' u, \ d/ Z
公式1 l& S, ^' n/ u. L' V2 P0 f
% A4 Z# r7 q8 {; ISince the fluid is incompressible(由于液体是不可压缩的), we have. W1 M, [$ b h6 L+ G/ M; H
/ w4 H" r0 x: H公式% t7 H9 ~1 Q! v1 U
/ i' f) d j9 N% U/ G
Where& d, I- t9 J. m' }
' q% ~. A. \* n2 e6 W& I
公式 ! P. l% R7 |/ Y p; R; R x, t& k& _ 8 t& w% [1 _" ^9 W6 E& L用原来的公式推出公式 - K7 n1 B* c; m, v3.Plugging v1 into the equation for v2 ,we obtain (将公式1代入公式2中得到) . [9 ?4 P+ W l3 O8 d: P+ }3 P5 N3 z) Q) e" \2 s) R. @
公式 * x, r$ L0 [1 R# L) N' a9 q8 k$ c( w2 k% V; {8 M4 b* N
11.Putting these together(把公式放在一起), because of the law of conservation of energy, yields:5 d% `. B" u8 h9 W+ Q" W; l
3 t& l3 m$ w* F: H6 j. i; Z公式/ X* }) T! G+ c% D g
3 Q' z: V( u. l# r& f12.Therefore, from (2),(3),(5), we have the ith junction(由前几个公式得) . ?: N \: t# X8 t: ]. H l # C0 ^. j( ?! q: y& Q: c! m公式 . ~6 C1 E5 B( c$ I, c1 l% W6 C ?
Putting (1)-(5) together, we can obtain pup at every junction . in fact, at the last junction, we have! @3 B' L; X3 \# X# \ H
$ `# U6 L3 O) F9 }3 N& t* K! \5 i公式- H# J8 S$ j3 R" e4 I
, ~1 \+ s- V/ u+ v/ T" _
Putting these into (1) ,we get(把这些公式代入1中) $ ?% D1 L: I( r% P# @! A 1 {4 V' }9 V7 J9 T; |7 p公式 3 I4 }( P) ^1 Z 2 a4 B2 h, z: m: Q1 P. vWhich means that the + ?3 g+ ^1 f! y$ ~7 ^' Y9 Q) g" A+ D7 h: R+ y# B7 N2 @3 {
Commonly, h is about + c8 e7 v5 ? D& P5 q! E; Q& B/ _& L; A) E3 Z" ?
From these equations, (从这个公式中我们知道)we know that ……… ) C" z0 F9 e3 k. \0 c# k0 V1 |/ z4 {6 A$ h0 X. R
/ J( G. F i7 a& N, o% F- b
+ @( M; w( O. O ?& X
引出约束条件 + c1 v2 d( j- P$ N n% F4.Using pressure and discharge data from Rain Bird 结果,7 }% Z( e/ c0 _, ~
" d+ Y8 ~$ `4 |
We find the attenuation factor (得到衰减因子,常数,系数) to be, F! ?$ I. \8 n3 ]$ a+ a
4 @( E+ m5 o* g2 v
公式, h7 N+ } c7 W0 N8 x$ @! F
: a) W4 [: q. x/ ^# G' H, A
计算结果 9 r9 r) Z# r( H6.To find the new pressure ,we use the ( 0 0),which states that the volume of water flowing in equals the volume of water flowing out : (为了找到新值,我们用什么方程)4 j3 g( @" x- ^; U, B) j
5 E% @/ ?7 t5 v7.Solving for VN we obtain (公式的解) 2 g4 M f' i0 e9 ` ; k" s4 ~. w' ~" ?公式 - A9 J3 s1 X7 D6 f4 O3 y! _& |. o# y# C+ \1 q) C: u& x
Where n is the ….. Y3 L0 J4 K6 B$ P: ^& k1 q8 C# D 2 o2 b* t" n# E1 Y4 q# U$ C D ) d$ h$ R+ N0 i" r/ D
}/ E% h' k0 X8.We have the following differential equations for speeds in the x- and y- directions: 5 s M( H! n2 s% M, I7 q) Q: m/ Z! P8 n( a
公式- s. @' I2 N+ _7 m: W
8 s& P( }! M- d4 W$ u
Whose solutions are (解) - B" A% n8 P8 d: K; F$ j6 a7 v$ t. d5 o
公式- o+ r- ]/ R3 u' C" \$ F. r" |! R
4 |) l8 s! x# p5 t5 T1 m9.We use the following initial conditions ( 使用初值 ) to determine the drag constant:2 m0 a7 S3 p( S% j
' b% A- _$ b* s, F4 b0 T& t$ D
公式 ! p9 Z& k. u2 o4 I) N% ^; j7 y* M7 ?! t3 Y+ O3 y0 K& d
根据原有公式8 o1 E D5 ?9 \) Z+ f; m
10.We apply the law of conservation of energy(根据能量守恒定律). The work done by the forces is3 ?! A+ Q9 R) t6 V
1 j9 E) {! Q" q
公式 ( q$ r* s5 \- G. h5 N6 D 1 U2 P6 H, p1 ~. u3 O' w0 X# ZThe decrease in potential energy is (势能的减少) ! V3 u( E O& }3 w7 g- V! e. \8 p- O5 u) b$ _% X: i
公式 2 t y1 i' P; N9 G- m* d* {' C* } }& y/ j1 Z& P
The increase in kinetic energy is (动能的增加)6 y: I6 \ F% d6 i* ^/ y8 Q$ R
2 K: `' }- p0 F% K3 u. S
公式 \7 B6 a! D- r- b+ }1 a# S7 _
# a% a4 \7 o. o' e* E: y+ |$ Z
Drug acts directly against velocity, so the acceleration vector from drag can be found Newton's law F=ma as : (牛顿第二定律)" L- N0 p Z" Z' W. x. \% r
" T% M" g: m0 f- FWhere a is the acceleration vector and m is mass / H6 a+ l/ s O" p/ K+ S5 \/ A! c/ _& g8 M6 q% S# [# @$ `7 t5 t2 v
8 N) u& \# B0 h3 p$ L& w8 D j
2 _8 l8 ?+ y3 z# ~$ T: K& A4 C7 T
Using the Newton's Second Law, we have that F/m=a and ) T. \; J; @& \# \ . A7 H- R+ G; l7 }公式 7 Z% |( W; l# Q9 Y9 b , b/ x0 x0 L, U7 [& xSo that 6 ^! b" i" Q0 H Q P& L + m" e* h6 T% {6 R$ K) x( P公式 2 L) y/ b+ f; J" V+ F2 x/ w# N6 b; e, u- x. [" R
Setting the two expressions for t1/t2 equal and cross-multiplying gives ! C( E: p) A, V8 M1 V* J! n) S' k& d: O; H/ I; N
公式 6 k' R. Z, f" {) A4 j2 I' m/ C0 _$ f- ]. e
22.We approximate the binomial distribution of contenders with a normal distribution:6 \3 F5 [) F- O4 }4 K) Q1 N
+ W4 \7 D: U0 |! p9 H% T1 }公式 1 i. i+ g S j* m0 e% Z, f5 @; I / }; i7 z6 \. b# W) f: r1 pWhere x is the cumulative distribution function of the standard normal distribution. Clearing denominators and solving the resulting quadratic in B gives " M/ o+ [: S K o8 z- K; y. x7 ` ( |( N' y3 x6 v4 N, r( u公式0 Q5 e( O# e: p4 U
: f9 l5 O: l4 B( Z( B( R6 ZAs an analytic approximation to . for k=1, we get B=c) f, M" _6 X c+ {% R7 V+ `
+ M/ l" i# o0 Y( ^7 b 6 @. _. r! N( w' L M4 h, p8 C2 K0 [. w7 O4 S1 e
26.Integrating, (使结合)we get PVT=constant, where / O* @5 B) D2 K2 {$ G+ K4 T' |& m) l3 V% j
公式 2 X# d) I3 F2 E" Y# p, H9 ?' a' ? ; p4 C$ K" j6 ^! U0 [# l5 FThe main composition of the air is nitrogen and oxygen, so i=5 and r=1.4, so 0 Q& f0 g* F/ o" L# C q0 K) r( t3 B- n0 j; ^
9 y" f/ y5 M6 _4 w- C% T 4 N: A, M7 t9 m$ q* G% P# Q23.According to First Law of Thermodynamics, we get. [9 ?. }; u2 `/ n% w
4 U) g0 J# n I7 U U' ?1 \( ^
公式7 g9 O7 Z# T* c& U
) K5 n& X8 }9 l$ [ r1 x( \. i
Where ( ) . we also then have - S8 {: H5 `# Q+ A0 x" L' b$ S- {$ C% @; t- r
公式 & f" O' Q% z4 d- M# w D/ J D$ d# O" t! v& r7 o! x* m5 G7 L. e- D
Where P is the pressure of the gas and V is the volume. We put them into the Ideal Gas Internal Formula: ' M" N6 I/ A- Z3 N7 I' T) Y+ }4 Q# _, M0 R
公式 $ ]* ], {& C1 \# U! q $ E+ _, [- ~ y* H J* }Where , _) L) e) V% L# t3 ]" x $ u8 @$ M; p" T0 Z) Z * x! R+ v' M) _0 b8 p# A
' y; I- Q2 a. z
对公式变形: H8 t- x4 o& h/ I" M; y
13.Define A=nlw to be the ( )(定义); rearranging (1) produces (将公式变形得到) 1 G% k5 y7 B. F; Z# n- f {* e+ _: w
公式- I; A) \: @1 F! X( S$ y1 Z
8 F' ^( t i' o% \We maximize E for each layer, subject to the constraint (2). The calculations are easier if we minimize 1/E.(为了得到最大值,求他倒数的最小值) Neglecting constant factors (忽略常数), we minimize ! U* R: F1 ]# m" j * m, K5 D+ F( `; d公式 - _$ Z& p9 V* C+ @ " k0 _& N1 y8 P使服从约束条件9 H. ?; H) n7 e4 K
14.Subject to the constraint (使服从约束条件) # F$ ]3 Q% {* \. \+ L1 b3 D3 b+ t; N9 o' ~
公式$ q C3 H6 ?+ h/ W6 C2 ]5 \- O
7 b9 I) s3 E$ Z. R' x( B' Y& |# K9 ^$ w3 w
Where B is constant defined in (2). However, as long as we are obeying this constraint, we can write (根据约束条件我们得到)1 X% E: O* V" }/ U9 x; L
! f. F6 w/ M; [
公式; z. h: x$ h6 w, a
, A2 K. z8 y! u! rAnd thus f depends only on h , the function f is minimized at (求最小值) & M& K' S8 j; N& C6 R" j1 g" t* f) C q! W& h7 R4 @ w
公式 0 c+ x: b! a. w2 F4 E, K( g3 t# U8 |0 I( a: D ^
At this value of h, the constraint reduces to " f, J* m8 r) f + S. r8 I, n- B' ]- R3 I2 L* N公式! a' m. u& x, z: o: W! j
4 J8 Y$ d0 h! B* x, b结果说明 ' \ Z6 x& X W) {+ C! r/ ^9 c15.This implies(暗示) that the harmonic mean of l and w should be ; ?5 V2 f/ l. A0 }( \8 t6 m7 \. m4 m7 y
公式 + C5 ^& X- [6 q: @ ! d( P4 R& q [3 j' xSo , in the optimal situation. ……… 7 \- ?( u( Z; b+ g7 _ 3 v( y" @; }/ v( M+ M9 i5.This value shows very little loss due to friction.(结果说明) The escape speed with friction is2 V% e7 T* t! x8 w! s" V9 E0 l
: o3 M8 C1 }9 P2 R# q公式. [4 [. h( y- }' M6 x
8 ^1 k: f0 b! m; A* R% ^" T6 l
16. We use a similar process to find the position of the droplet, resulting in % {3 t% v( e9 q$ I! y 5 L# |) f! |4 ^, k0 p4 v, T S公式$ @/ w2 ?9 \3 R; L9 N9 a) ]3 B
$ y% i0 J/ m, K4 c* T
With t=0.0001 s, error from the approximation is virtually zero./ _8 v+ a- X. T! H% G
1 c- e3 s0 a' U6 p4 C7 Q; W j4 B4 w2 K% G& Z( K / l# Q. t5 g1 ` _8 g9 B0 u17.We calculated its trajectory(轨道) using2 w: G, t0 |1 y4 M! s% t
. i! U2 H% j9 E# m, c Q
公式 ; O1 W* \5 I% t% \8 g* A2 ]% a& w# k) t* l4 K' ]1 g0 Y
18.For that case, using the same expansion for e as above,8 J9 [2 x+ w$ {9 c
/ N& I& v) R" W* d+ `$ P
公式6 ~' ~& ~6 s- F! t9 w
& u5 B2 l: w6 n0 F' Y" t7 F
19.Solving for t and equating it to the earlier expression for t, we get0 X3 C1 d" S! @' K
8 K- v4 q2 e. P o, G6 t o ?
公式 8 U8 I1 K( c3 V4 q+ ^ 8 M/ F0 Q* G: k: J20.Recalling that in this equality only n is a function of f, we substitute for n and solve for f. the result is" k l9 g1 U; G+ C
7 e! ^5 X+ F- W* r% \* |) W) X& {
公式 2 @9 x' H8 b8 A0 _) L5 }# [ , i: t# \3 Z' F1 [As v=…, this equation becomes singular (单数的).0 ~, i; e( D) ^' B1 d# u( z; q
: l; H% Y. V2 N0 D 7 v% u6 m6 x* J( q, c& o- l; t
+ ^ k7 c! N }2 K4 }
由语句得到公式" K2 S, n$ e# ` F
21.The revenue generated by the flight is$ ~: ~' t" l' W& t9 j* m7 K9 `6 B
+ h0 d8 A5 M- `1 l8 H/ c0 q公式, f) |! g! g' q. K4 M. G2 j% F
4 O/ C! C" n+ n5 e+ V+ Z $ p+ G& P8 h4 V2 W7 h$ i" F5 L ( @2 |+ Z/ {4 r, Z, k4 M24.Then we have - A# P. ]( _+ V- S. t. q: k/ w, P( Y m0 Q
公式 $ q, G& e1 a8 P' H1 y# v* {% ^( }6 h$ }; v! H0 `9 s. k
We differentiate the ideal-gas state equation ) p/ H/ L8 a* j% }* J) L1 s C5 K
公式1 p0 [/ g$ L/ u$ C; b+ n
7 e( [9 H/ M* c" a$ T" oGetting) k$ u; l2 t5 S" V; _0 c; h
0 a) M: `- y) }2 l# V2 u: y& N
公式9 q, N/ }1 x' A. [4 W8 Y
8 i0 w4 ?7 O+ W9 S0 V
25.We eliminate dT from the last two equations to get (排除因素得到)0 E% u. G/ W9 s' C0 J
2 c. n3 V. l& B
公式 " |, g- Y& F$ `6 @& p & U/ T0 T8 c' C( Z% v; r4 e/ o 3 P$ w/ |+ K* _8 w) z
' k2 h3 P* W1 r/ @22.We fist examine the path that the motorcycle follows. Taking the air resistance into account, we get two differential equations 8 j/ Q$ \$ k% y7 b" {9 T6 D+ x! a 4 w/ h! E$ s! m4 R公式1 S& o2 e2 b& e& i& _# U
, Y2 L: O. P4 Y2 {Where P is the relative pressure. We must first find the speed v1 of water at our source: (找初值)" [# ]9 G4 C0 a- H' C9 ~4 F
! S# R1 R+ s- ^% A5 T, a; M+ z2 t
公式! k+ q2 e* J7 u* r5 Z* S
————————————————5 E+ Q! f) f& @3 l% a& `5 s$ P
版权声明:本文为CSDN博主「闪闪亮亮」的原创文章。, l: V: ~9 B$ m' z6 \1 Q3 X8 Y
原文链接:https://blog.csdn.net/u011692048/article/details/774743861 K2 W4 a8 w& R