由假设得到公式 , F" u6 |4 n" ]3 m! |1.We assume laminar flow and use Bernoulli's equation:(由假设得到的公式): e* P7 K5 p8 G L4 K
2 f: F$ P; P( Y" h2 }# V4 o# Q
公式 8 }8 D- w8 }6 X9 W T2 v: P ; a$ X* f6 Q2 p9 N- T) L4 YWhere ) c/ d; x9 Q) U4 m2 f/ l5 \; g8 B/ K1 o4 u( o7 _6 D% T
符号解释 - ?4 y* ]% _- b8 Y1 n/ Q5 `) |( c& v2 b S6 `
According to the assumptions, at every junction we have (由于假设) - ^, M# c4 R- Y; \4 o3 Z- M 8 ^- R% C! q* V$ ?* L公式 ' _9 s3 ~: a( P2 }2 h. @" i0 E' R
由原因得到公式 + U: l0 x, H8 j' e6 W2.Because our field is flat, we have公式, so the height of our source relative to our sprinklers does not affect the exit speed v2 (由原因得到的公式); / |* X6 m2 Q1 z. D, {6 J% X$ T5 ?, S5 J+ q5 s( |5 B
公式3 X0 i/ _* W( p6 O9 y# B3 N6 \( Y: U
9 E! t* I" ^1 u) E3 B( [Since the fluid is incompressible(由于液体是不可压缩的), we have' A7 q' P' [( V
; d, j8 c8 i I$ E1 W( j公式& _6 h/ _8 V- u' m* x# n& `
( j( |, E& w" Y4 N7 f
Where, R& t) y* C5 Z; U0 u+ L
3 R& A$ v& m0 X* C9 R" b4 K% J
公式 5 D# a! @( \3 s4 S1 N. S- ^4 W! Z
用原来的公式推出公式! g8 v5 ~/ p/ ?
3.Plugging v1 into the equation for v2 ,we obtain (将公式1代入公式2中得到)0 s* k2 t" H1 G
( E- F e: G0 f* G6 a4 k" o& T2 V公式3 _+ Y! \! a2 H! d
7 R+ l# U/ t t4 j& F11.Putting these together(把公式放在一起), because of the law of conservation of energy, yields: ; ?! M/ ]5 W) [4 Q$ j4 `8 @5 h7 T4 T* e; D9 u4 l0 f5 p
公式 ) C$ E6 I2 E! R3 \1 q R& k6 p* e6 Z9 C2 l
12.Therefore, from (2),(3),(5), we have the ith junction(由前几个公式得): b5 @1 b0 M+ N8 v& Q, Z
6 ]' Y& M J; B \6 C* a0 C# N
公式6 F" ?( @# T6 [) S% T2 t
* H* v; w5 e0 n: Y: Y( L( w3 G$ b5 M
Putting (1)-(5) together, we can obtain pup at every junction . in fact, at the last junction, we have% o7 X( b9 W9 J: y# ]
. g8 @, u& o' C公式 # J1 K# d) n, t/ c" L6 v * O% G3 ]/ m% k3 M1 J7 ^Putting these into (1) ,we get(把这些公式代入1中) ( w4 P8 K1 t# p/ X ; S7 \9 s1 q) D公式 % ?2 ?. J$ n3 R. c3 `: A) O% N ! [; ~* }' ^. t V5 F5 nWhich means that the 0 o- X6 t, R0 O6 O( [" R0 f- G! {/ [. A5 R* t; s0 Y0 [$ |. ]
Commonly, h is about 4 k% j8 N8 W0 \) v$ b8 k5 J+ c4 m1 t
From these equations, (从这个公式中我们知道)we know that ………4 k' C- l; p/ d' F G
* Q0 U7 a8 T8 r; ?& Q5 v ; O8 V& N) s, s$ E
' q8 P; u1 Y) d+ M& T6 q6 T引出约束条件 t/ [1 t" ]" o! Y9 d0 z+ y9 @4.Using pressure and discharge data from Rain Bird 结果,* i' Q. q9 X3 Y. U' I
. `! A: a P0 B5 V: y9 _* c2 Y- G3 e
We find the attenuation factor (得到衰减因子,常数,系数) to be 6 r( J+ ?' [: I& v) i : S3 S. F9 `; u9 v公式; D! Q$ L& h5 E5 E2 \# ]
6 Y' e( `4 y; \5 B$ L# `
计算结果 0 q3 }: V" E1 g5 i6.To find the new pressure ,we use the ( 0 0),which states that the volume of water flowing in equals the volume of water flowing out : (为了找到新值,我们用什么方程) / M) p/ F& p( ], i; u( s 7 B8 O# K% H6 q1 C9 P公式% d- q3 a5 t- x& F5 e
8 H/ {) r( x/ P. q4 l
Where1 a- N! b' H# G- s' [
3 K+ Z$ d9 r7 T$ B' r. n
() is ;;% D4 s/ v( @" E6 ?5 I/ G8 z
* l8 J8 j9 J& }# [ S7.Solving for VN we obtain (公式的解) }8 N h5 z [ 5 |. q5 { G# Z4 n7 ?. { C公式$ T5 |% c+ L7 g- F, M6 a7 Y
2 @8 f+ D7 \) Z* @5 G" L0 q7 I4 AWhere n is the ….. 8 \% D& n2 ?; h! Q' i7 e: I# ?' X4 w E
6 Y/ Z5 n8 o& x: U' E7 S- R
5 P3 k3 R( B5 j7 {% x2 A+ v- W% v
8.We have the following differential equations for speeds in the x- and y- directions: @8 k' D7 k8 f, w6 d* ~8 D 6 ~5 H4 J" a: y; l公式 " x( v8 B- Q+ l! o( p + Z# m: n1 K# ]% x; yWhose solutions are (解)# d) T( J# W- k3 v J2 O, f$ x
5 c5 I5 L4 R2 k$ o- J# V: C公式 : D4 N2 b/ U3 K 5 ^6 O+ L6 p8 q( [" [* v9.We use the following initial conditions ( 使用初值 ) to determine the drag constant:) m I) Q3 k. Y* c1 b$ \7 `
, n" y$ p9 x3 R5 R# ]" x: I
公式 j V$ h5 ^& U; K9 C' d+ c) p - b" Y5 C( v( k9 o7 k根据原有公式 % G% W2 a# g) v- \, ^; }10.We apply the law of conservation of energy(根据能量守恒定律). The work done by the forces is* y3 M! A' g7 n3 L' ~; v) J
/ k9 r% M7 N2 P: G. R公式$ g2 q" x9 r* d2 W& J9 X
4 k) h+ ]. V; o
The decrease in potential energy is (势能的减少)2 p& a6 P2 i: r3 a6 e
' v" Z2 I$ G/ I! M4 u9 `公式 7 [* d6 g7 Z, q3 ^1 P 5 V3 `7 C1 J2 h t2 R d/ {& \0 IThe increase in kinetic energy is (动能的增加) 8 x( H0 S' m/ W " b; C# Z1 A+ Z公式/ o o+ Q- Q7 y7 w. E4 g6 j* A
) \/ b# ?) N* i, Y, x' V& ]
Drug acts directly against velocity, so the acceleration vector from drag can be found Newton's law F=ma as : (牛顿第二定律)1 i4 F- N' n0 n2 r" q
' M. A/ H! z4 g% d8 v0 fWhere a is the acceleration vector and m is mass @9 G x/ h" H* j$ @, Y ! `8 \0 P3 ~, k) s3 F# } ' J* _6 Q- Q; [( P. ~9 y & `' K% p3 e5 ]0 L. RUsing the Newton's Second Law, we have that F/m=a and ' s8 W) i- M: s& d3 y6 T8 l' B$ @8 S& h: c$ H; Y
公式$ d- ^2 r% U$ A7 o, j
8 G) X- ~% J2 t! P/ ^& T/ mSo that 7 y% v' n" z* ]! |8 `2 X 1 y: y% [2 s* `6 K, k& b公式 9 A# Y( p3 w: l2 ? # T& G- W$ z) K9 R0 a& R4 y! @Setting the two expressions for t1/t2 equal and cross-multiplying gives5 ~* A3 D3 q' k& o' Q, R
# N8 r% \- q t' r0 [1 |公式 , b* d Q6 }6 L8 [0 z) @) D! A; @' i8 M$ t2 C/ Y
22.We approximate the binomial distribution of contenders with a normal distribution:- p0 c/ w3 R3 O, R5 Z
& S% m6 K7 r( G9 r0 F
公式 I# A' ?- t4 I: ^. ~3 W% W; N! `. p
Where x is the cumulative distribution function of the standard normal distribution. Clearing denominators and solving the resulting quadratic in B gives! i, o A) `* `( }
7 }1 U, x/ V+ F( N; j) K
公式 1 N5 s: s$ M: l# B$ D" t" j 6 _ I7 v {0 _9 sAs an analytic approximation to . for k=1, we get B=c - U6 g! `: x A( H; ~! R7 A6 i: }* ^ x9 x% t6 b9 b2 ` Q1 Y& F( g
V8 ~( e8 M+ z5 Z' x
, c2 D" e2 ~3 U& U+ e( w) @& c26.Integrating, (使结合)we get PVT=constant, where + D8 M' t" R6 @% S" z 2 ~* [- ]* G( L* }公式9 ]) U5 }5 X7 P! B
) b" X' t0 j$ |! `/ p: e" S7 d* `The main composition of the air is nitrogen and oxygen, so i=5 and r=1.4, so ( [3 N+ t0 h: l: p; V% F8 F3 ^- i! J- G; V5 S7 q, W
/ h) u, ^8 T0 e B0 X3 N( \( B( L
2 @( H3 e% {; y$ R
23.According to First Law of Thermodynamics, we get( |) w @$ X0 N$ P
5 A8 G; ~* ^; }# b b公式! |' {1 C* b) |. O: e$ p
' Q) M. ]* A# I {6 v# _
Where ( ) . we also then have 8 Z! Q. k5 y) _ 9 k0 S9 a! t& ?" L公式 ' u' H% i2 D1 x' T7 j8 m, d ' b$ T( ?; c* g: f/ F+ ^" _6 Q; ?Where P is the pressure of the gas and V is the volume. We put them into the Ideal Gas Internal Formula: 3 F2 A- {4 q0 n+ a7 } A: E* v; H$ R
公式 4 `5 R; O v+ d# W! ]3 f- P2 i+ [ . }0 H3 N; n' D4 s, @* V1 M4 UWhere * z3 k) Y( k2 C G) a9 `; K' w" c( l3 Y; J- E
2 V% i/ ~) j9 Z0 t : E& k* b2 `5 {6 B$ f对公式变形 - e! z3 {7 N! b" Z7 t& u13.Define A=nlw to be the ( )(定义); rearranging (1) produces (将公式变形得到) . V' O1 |% T9 y J7 O ; J- e8 J! [( a公式 + H8 P; f/ j' ~+ ]" e( L- X& z5 t) Z, `. h
We maximize E for each layer, subject to the constraint (2). The calculations are easier if we minimize 1/E.(为了得到最大值,求他倒数的最小值) Neglecting constant factors (忽略常数), we minimize; ^) z9 R+ @) r- k4 v1 Z
0 ~ t" `) P& w- W) B2 i9 q" Y7 l
公式4 r+ F5 n, ?7 h/ ?# V
! U5 J t" }8 B5 v使服从约束条件 # u" D) L! N E% D8 O: t' s& s% \14.Subject to the constraint (使服从约束条件)/ T# ?9 x0 v! s/ @; T8 y- e
( e+ A1 `+ G/ _1 [公式 2 P4 w! {/ H- T A$ T. m. S: V/ s$ o: U' h( d; q) f5 x1 q$ _
Where B is constant defined in (2). However, as long as we are obeying this constraint, we can write (根据约束条件我们得到)$ r! M! @, P2 I( `3 x
! y; c1 B8 ^# s
公式 / k6 S6 k. f* d5 p7 ~ & T- A. ]) E# b6 HAnd thus f depends only on h , the function f is minimized at (求最小值) ! B( |" e; y" [$ X" F0 X" v: |' i: o: g) Y& [5 q V3 o1 G" m
公式 ( W' x, `; H& X$ P+ N, v3 U7 @! O- a* L
At this value of h, the constraint reduces to 0 o2 C) b# ?9 B) O7 [ P * A+ q% S# U; M; p" t% A. \公式 4 @0 w& j1 [' l. J" Z! T 3 b B% [% G% P7 a# T5 x$ x结果说明7 p2 L9 n0 @# p5 @
15.This implies(暗示) that the harmonic mean of l and w should be6 ~% s& a' h* K
/ J$ ~, C7 o3 k
公式 * @9 |' f* j+ w 6 Z9 v6 \- t5 s2 |So , in the optimal situation. ……… # x, h9 z5 V$ v8 ]" @0 t3 S0 L$ z- L5 O8 U8 c1 i1 |' d
5.This value shows very little loss due to friction.(结果说明) The escape speed with friction is! @% W% i; g7 H$ m
. _- I8 S) i# K; p16. We use a similar process to find the position of the droplet, resulting in8 ^. G. n8 W) \) ]: o* R; ]) Y
# ^# B+ ~4 m' L
公式3 V+ n/ s# Z0 u9 [) X' Y: {
6 P1 V& K# G E/ \2 w9 _
With t=0.0001 s, error from the approximation is virtually zero. * I! w! j+ z c9 U5 \' W- `- \/ ?! m& M3 X$ {9 L/ G I3 R
+ w# w; N( e& f k! B0 d
- V! } ~/ f, Y3 f" K# Z) y
17.We calculated its trajectory(轨道) using7 z* q' c+ s0 b) V. ]
3 v1 |7 Z+ w% w18.For that case, using the same expansion for e as above,9 m( }' {+ C- |; |. p
! {" w' q1 a8 ~* b( h$ |- p0 M1 x/ G
公式. u( A) u3 R. I; U& x: W8 W
! k& J: g5 C$ D- G
19.Solving for t and equating it to the earlier expression for t, we get ) n2 d3 d. u2 W! ^/ g5 A! A g$ ^% J- [' p
公式9 l* {2 i& Q* Y2 K6 q0 E
U( A( Z7 G: j# r, p
20.Recalling that in this equality only n is a function of f, we substitute for n and solve for f. the result is, F- n$ Z* ^4 d, K
[; q. }- N6 [& \! g公式 9 h( \- t' j7 k- g8 E( O" T7 ^- X0 V
As v=…, this equation becomes singular (单数的). 6 e8 a, D' c# w6 ~7 g; l/ Y! v5 W) w' U& n3 P
, s' ?0 \5 K6 W Y% O6 ?: b% R+ B
由语句得到公式' C- |; f# U8 o
21.The revenue generated by the flight is" Q; C9 `& a# c/ |" @3 l, I
5 H/ F6 l3 ~4 y1 N/ \
公式( w' x I4 i! V ]. x
6 Z/ T; k2 f3 h, M. p/ q
0 L! _3 @$ ?( S _1 J5 l+ M+ P0 [# s ! \: y ]2 i! n9 O24.Then we have& H) f( `5 b! O [" |
. n) `! J9 P# b1 W+ e
公式 2 ]( A) @5 |3 Z ! K- `" s- T4 M4 c- m+ R/ xWe differentiate the ideal-gas state equation+ ~" a6 A, P |- U8 E/ F9 M
) U- o. l4 n5 F4 _+ s t
公式 / s1 c0 w8 C) @' z d- O) `6 m$ j; ~8 {5 }" i) P1 h) U7 z
Getting ) m5 |! h$ s; z 3 t5 w L0 C- V$ u公式 5 O) C* |- i: D6 T& n + @& G% Z# @1 w8 e- `5 e25.We eliminate dT from the last two equations to get (排除因素得到)% r7 B% Q0 ^: _/ z5 q1 B
7 }) F3 A' L7 \# X; f L公式/ S/ P9 s; s7 B% h, Z
$ {# p0 F, }: e( G6 s ]- [+ U ; k- `, B) W# a& K: A
7 @; p2 F4 ^( B+ }0 a8 j
22.We fist examine the path that the motorcycle follows. Taking the air resistance into account, we get two differential equations5 g0 N* [& {9 L8 c
[ q* X" |% o9 p9 Z' f
公式 - S$ W: D: ]9 J& r3 M; B! P. Z+ d0 {) K3 ` o- u8 H, F* S/ J
Where P is the relative pressure. We must first find the speed v1 of water at our source: (找初值)# j+ T7 { C* Z* H5 j9 h
4 s5 f0 s6 J3 e' J/ c8 S公式2 ~- j/ n8 A3 k
———————————————— 5 a8 P6 [4 Q5 U; o# H' y版权声明:本文为CSDN博主「闪闪亮亮」的原创文章。 ( n. U6 m. u( o3 ~8 {2 \4 D; K$ s原文链接:https://blog.csdn.net/u011692048/article/details/77474386 8 E8 t# {3 I/ B/ I1 n