QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2291|回复: 0
打印 上一主题 下一主题

[其他资源] Transferred Multi-Perception Attention Networks for Remote Sensing Image Supe...

[复制链接]
字体大小: 正常 放大
杨利霞        

5273

主题

82

听众

17万

积分

  • TA的每日心情
    开心
    2021-8-11 17:59
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    网络挑战赛参赛者

    网络挑战赛参赛者

    自我介绍
    本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。

    群组2018美赛大象算法课程

    群组2018美赛护航培训课程

    群组2019年 数学中国站长建

    群组2019年数据分析师课程

    群组2018年大象老师国赛优

    跳转到指定楼层
    1#
    发表于 2020-11-13 16:10 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Transferred Multi-Perception Attention Networks for
    1 D. W5 l" j6 b4 a
    Remote Sensing Image Super-Resolution
    $ z- d* t$ ^( O6 O" Z
    " n) y& w7 |  H3 T2 x
    4 ~' [, G3 y5 J0 _- m9 V

    6 o! J- O; p3 U- cImage super-resolution (SR) reconstruction plays a key role in coping with the increasing. D! h. U6 Q. d5 q: q
    demand on remote sensing imaging applications with high spatial resolution requirements. Though
    3 v! V6 S( ?. A. t9 U2 z- jmany SR methods have been proposed over the last few years, further research is needed to improve
    $ a6 \7 v) o9 [) t- f& J5 l* GSR processes with regard to the complex spatial distribution of the remote sensing images and the5 |4 y% ?# v  Y& P. q
    diverse spatial scales of ground objects. In this paper, a novel multi-perception attention network# J* [8 w5 B0 |6 M* ~0 T4 e
    (MPSR) is developed with performance exceeding those of many existing state-of-the-art models.) H, H; Q7 V* Y" ?' x5 f
    By incorporating the proposed enhanced residual block (ERB) and residual channel attention group5 ~& r- _8 ^2 I* z- y, M3 D
    (RCAG), MPSR can super-resolve low-resolution remote sensing images via multi-perception learning) k% g' l  G$ b) s' A
    and multi-level information adaptive weighted fusion. Moreover, a pre-train and transfer learning% C2 [* H9 r6 w% c& {
    strategy is introduced, which improved the SR performance and stabilized the training procedure.
    ! w" H  h( G, S3 `4 xExperimental comparisons are conducted using 13 state-of-the-art methods over a remote sensing
      ^9 D' l3 V3 \* L1 K1 ?+ |6 q  L! ?dataset and benchmark natural image sets. The proposed model proved its excellence in both objective
    6 M% [' L$ p" i1 q  wcriterion and subjective perspective.
    - z: r4 P8 A1 M7 E* Z
    8 l" R+ Q- w% K& p
    2 S9 r. e. X: e4 @) O/ P

    Transferred Multi-Perception Attention Networks for.pdf

    11.42 MB, 下载次数: 0, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-6 06:16 , Processed in 0.546627 second(s), 53 queries .

    回顶部