QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1330|回复: 0
打印 上一主题 下一主题

金融风控训练营TASK03学习笔记 学习知识点概要

[复制链接]
字体大小: 正常 放大

906

主题

65

听众

17万

积分

  • TA的每日心情
    开心
    2023-3-15 17:49
  • 签到天数: 224 天

    [LV.7]常住居民III

    社区QQ达人 邮箱绑定达人 元老勋章 发帖功臣 新人进步奖 优秀斑竹奖 金点子奖 原创写作奖 最具活力勋章 助人为乐奖 风雨历程奖

    跳转到指定楼层
    1#
    发表于 2021-5-28 17:45 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    学习内容
    1、特征工程的概念和重要性
    业界广泛流传这样一句话:“数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已”,由此可见特征工程在机器学习中的重要性。具体来说,特征越好、灵活性越强,构建的模型越简单、性能越出色。

    概念:特征工程就是从原始数据提取特征的过程,这些特征可以很好地描述数据,并且利用特征建立的模型在未知数据上的性能表现可以达到最优(或者接近最佳性能)。
    特征工程一般包括特征使用、特征获取、特征处理处理、特征选择和特征监控。
    特征工程的处理流程为首先去掉无用特征,接着去除冗余的特征,如共线特征,并利用存在的特征、转换特征、内容中的特征以及其他数据源生成新特征,然后对特征进行转换(数值化、类别转换、归一化等),最后对特征进行处理(异常值、最大值、最小值,缺失值等),以符合模型的使用。
    简单来说,特征工程的处理一般包括数据预处理、特征处理、特征选择等工作,而特征选择视情况而定,如果特征数量较多,则可以进行特征选择等操作。
    ————————————————
    剩余代码请前往原文查看
    原文链接:https://blog.csdn.net/zzm13798974259/article/details/116088176
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-28 13:21 , Processed in 0.283000 second(s), 51 queries .

    回顶部