! `8 ?+ f' S/ W' X/ l, X& _
$ f ~# ~8 Z: i$ V, x$ I+ I
4、Python代码 " a$ Z: v- P% r$ I, y#-*- coding:utf-8 -*-. P9 v% I! M8 g& R" b! A( [$ f: o
0 \& f( s' K$ i# G6 W6 q
import random: d; {$ n7 Z1 u5 d- F* S7 w( @ ]
import math1 b q% D) Y7 c
from operator import itemgetter 5 b1 [' U3 w( w H0 t. z' @* S0 n8 b; g; E& J9 M* t6 W$ s
class Gene: 7 O7 Z# { J, w/ B '''9 M% s' C/ M- o+ o3 P
This is a class to represent individual(Gene) in GA algorithom$ q" X5 d. i0 x& [) s; {
each object of this class have two attribute: data, size ?" Z8 C5 P4 h) R% z- }* h
''' % L) \! d. N9 L F$ N" f- S def __init__(self,**data): * d0 N, \3 j( G1 @9 `. b- P" ] self.__dict__.update(data) ( q$ ^' p9 U7 k' K self.size = len(data['data'])#length of gene' a% F. e' [) }& u+ f- x
6 p+ t& h7 E0 J* X
3 {; R4 x7 k! M$ P1 s+ H2 lclass GA: # V9 D/ c" f+ B5 h: O/ `" y7 v" @ ''' 6 o% c1 X4 L2 g$ c This is a class of GA algorithm. % P4 m7 ?2 i- x
'''+ X* y7 J# j: l0 |
def __init__(self,parameter):) D* ?" }: U& O& |9 x! V4 f2 v3 [$ e( o
'''5 D& J4 B7 G6 c" |
Initialize the pop of GA algorithom and evaluate the pop by computing its' fitness value .# d! v! p' S) |, V6 g, s
The data structure of pop is composed of several individuals which has the form like that:+ T: N7 Q0 S% O" R ?8 N4 C+ h6 k
$ i) I0 f, P% n. T
{'Gene':a object of class Gene, 'fitness': 1.02(for example)} / Q6 l* t0 I6 B V4 l: d' M. Y Representation of Gene is a list: [b s0 u0 sita0 s1 u1 sita1 s2 u2 sita2]1 ]7 @$ j$ N1 X% ]( j$ V; G
# Q& r, t6 h( d w( X7 a ''', b" f8 V2 c0 Q: [+ ^2 i6 i
#parameter = [CXPB, MUTPB, NGEN, popsize, low, up]2 [& z! ^3 h8 x- `+ T3 B
self.parameter = parameter) w& Z2 B, K) y* R9 T
, ^# `" T) e! R% h& b4 Y low = self.parameter[4] % u: d/ n {* q" Z up = self.parameter[5]0 i4 M, F$ W1 s
* k1 K" g k1 {$ l& ?- W, s
self.bound = [] 5 |4 B8 E% Z' J. ^7 f' ^$ s* \ self.bound.append(low) $ P2 p8 e, J6 ~7 u self.bound.append(up) 1 y8 b+ ?, d( d+ I1 ^. _' o6 K . c2 N, h( L7 d; f! B, ] pop = []/ R8 p3 v4 m& c9 ^) R9 N0 ?( w
for i in range(self.parameter[3]): 0 z3 n* F( e4 j/ a( M geneinfo = []+ B+ c: |4 U7 |# w( h
for pos in range(len(low)): ( a2 b* n" E: t geneinfo.append(random.uniform(self.bound[0][pos], self.bound[1][pos]))#initialise popluation9 j: }0 ]) X5 X$ m
! `+ n$ \* r2 v7 \4 C
fitness = evaluate(geneinfo)#evaluate each chromosome5 A* A+ G% D2 n$ \) c+ x
pop.append({'Gene':Gene(data = geneinfo), 'fitness':fitness})#store the chromosome and its fitness # r& G( d$ c6 F) ~% R: Q# ?8 T$ E. S2 [6 h
self.pop = pop 0 l `- @# ]. A7 ? self.bestindividual = self.selectBest(self.pop)#store the best chromosome in the population , G6 J& u) r% D7 |) y" ^: ]* u6 t' L S t$ C& \ i def selectBest(self, pop): : K: }! |6 r- ?8 w3 @ ''' 1 _% Z4 E r1 i" s r/ K c5 a select the best individual from pop4 g; q# G: o6 ^% ?9 n% Y& p% D
'''$ b1 T1 g4 S |
s_inds = sorted(pop, key = itemgetter("fitness"), reverse = False)/ z3 b8 w8 H9 y
return s_inds[0], ~( i) _6 N4 E) `( t' x3 s
) R5 D7 y# u; R ^
def selection(self, individuals, k):' r- m' @ S! o+ V7 W& k. }3 [; d0 F
''' ; W k$ |' v/ y" Q$ b+ w7 a2 X select two individuals from pop9 s- e* P3 ~9 t, c8 X
''' 2 M- `, I# O( x' A7 P s_inds = sorted(individuals, key = itemgetter("fitness"), reverse=True)#sort the pop by the reference of 1/fitness + q) |+ c! C% h& @. S
sum_fits = sum(1/ind['fitness'] for ind in individuals) #sum up the 1/fitness of the whole pop ' h* ^; X) s+ K; v/ [. ?+ j & Z3 {8 x" p$ b0 A% R3 \/ d) o% B: ? chosen = [] 1 \) i' F y- h Y' A for i in xrange(k): 1 O( l. ~- d3 o* S u = random.random() * sum_fits#randomly produce a num in the range of [0, sum_fits]9 A$ e; _6 v7 x4 X
sum_ = 07 l0 D$ v- {/ w1 ?# o$ o: q7 D) L
for ind in s_inds:- |0 g( N& ]. F/ {4 s3 D0 }1 b1 s
sum_ += 1/ind['fitness']#sum up the 1/fitness: \( {, ?5 B! }. l" b, }
if sum_ > u: 7 G1 _# u5 W, m9 | #when the sum of 1/fitness is bigger than u, choose the one, which means u is in the range of [sum(1,2,...,n-1),sum(1,2,...,n)] and is time to choose the one ,namely n-th individual in the pop ! b) q7 w3 [, {, ~( F$ u1 F* { chosen.append(ind) 0 W8 g, e; L$ K# O& U$ ]2 |1 O M) H break: S! s. U& B! z Y+ [
+ }) ^7 e4 P$ f8 T* B2 ^ return chosen 0 e6 D. E+ {6 Q% `8 p( v $ E; X3 ^, W/ z9 G5 s1 W) h, W* d: ^- d+ K4 X) x3 v
def crossoperate(self, offspring): f# F% o* C4 X6 I. k3 s '''. m+ w' f$ W% {9 F- a
cross operation 2 M `. s% v7 S; ^0 u* n ''' 1 y. R8 |; q3 _ dim = len(offspring[0]['Gene'].data) * P/ z2 P7 ]* |) D* H: l: v# x% u9 {# N) c9 j: L6 m# H) P
geninfo1 = offspring[0]['Gene'].data#Gene's data of first offspring chosen from the selected pop3 H1 o; j) ]1 H3 F; W5 D% S$ K: T
geninfo2 = offspring[1]['Gene'].data#Gene's data of second offspring chosen from the selected pop3 n- v) \# ^4 Z7 b; s
# k5 s# Z8 j9 J/ s' p4 A* n; I pos1 = random.randrange(1,dim)#select a position in the range from 0 to dim-1, ; Q' C# `1 f/ ^! {0 V" O! e
pos2 = random.randrange(1,dim) ) {: P. c1 s% ^9 ]/ R; \ ) ^; x/ I' n3 s; c& v newoff = Gene(data = [])#offspring produced by cross operation ! g( ^: K' D; C* W- o2 b temp = [] + b8 f ^7 G6 |- B9 D. A for i in range(dim): / j+ n6 h Q6 t _/ h if (i >= min(pos1,pos2) and i <= max(pos1,pos2)):$ t. }7 U% _* Z0 u- Z
temp.append(geninfo2) 8 y- g- m4 w; O& y5 L #the gene data of offspring produced by cross operation is from the second offspring in the range [min(pos1,pos2),max(pos1,pos2)] 1 r9 f% n" k) a5 {) S) _' d$ n else:8 W( ~( k5 c1 X! H$ N6 q- Z Q0 u
temp.append(geninfo1)! Z9 m1 H5 }2 E
#the gene data of offspring produced by cross operation is from the frist offspring in the range [min(pos1,pos2),max(pos1,pos2)] . a5 J( B- f- b* h# f( y5 K newoff.data = temp) W5 u4 |1 I# ^% l
' s8 H' _ r/ t N# p0 q, A
return newoff: a+ R& K7 M+ f. o9 y
% n+ J( I5 x; T+ e0 B! R7 r
1 o9 O5 _, m9 _6 {) E def mutation(self, crossoff, bound): ; s/ u l5 b% B5 T ''' D2 n, r! a# ^+ u/ L+ d$ u mutation operation 4 G7 i& R' E. n8 u. `% F+ g1 P8 _ ''' 7 W! j& _6 F) t" E% x 5 q4 @6 B% C" x) p* b dim = len(crossoff.data)+ Y) E m! U3 J" V0 Y
2 R( J6 K4 x5 B/ D. f pos = random.randrange(1,dim)#chose a position in crossoff to perform mutation., ^, C3 p# h* r
$ s9 A% C6 @) ]% V, b6 I: w% f
crossoff.data[pos] = random.uniform(bound[0][pos],bound[1][pos])9 x7 [* A. E( o+ V! S, b$ c; M
return crossoff % A: M F* Y, _- w$ s, R1 |& R6 I h& z, m
def GA_main(self):: K& w$ P( K2 @
''' 0 i. ~7 }# p3 ?5 s3 A main frame work of GA ! ^5 u3 R4 L5 C- ^ ''' / A" z7 e/ a5 }2 L2 }5 m8 o- x2 C' \+ V# z8 {2 K, `$ h
popsize = self.parameter[3] 2 F8 d6 R0 S6 l$ r7 c+ ?* J$ u + }* S. a! ^: b3 y# U% z7 r, u& q print("Start of evolution")% Z ]: C# _: g, C
# G X- Z7 [. C8 w i. R
# Begin the evolution ; `! ~5 l/ G, a; W8 p o* X/ I; Y( g. I) T for g in range(NGEN): , f) N; G6 g. N) }6 f5 d 8 R! Z- j1 o6 ] print("-- Generation %i --" % g) , G4 E, j0 C! t/ f+ v) i; K) }% b1 F4 A/ f" e J+ R
#Apply selection based on their converted fitness - k1 q( J# d) a- n( f- ] selectpop = self.selection(self.pop, popsize) % y3 A8 t- f8 l4 ]- N
" a* M; U7 e8 q3 r. U! K nextoff = [] 7 Q' J, e; v0 F) x' Y while len(nextoff) != popsize: - e* W, x* }) }1 p. y. a" a1 T
# Apply crossover and mutation on the offspring " i! y( H3 Z% X+ I/ r, r1 i. o9 V+ e9 d0 i S. l% g: i
# Select two individuals! \# C8 t% E4 F: X+ H) o0 T( [
offspring = [random.choice(selectpop) for i in xrange(2)] [& c; O3 J0 M, V8 v8 `) ?) _. R- O& ?1 j5 f* S8 c
if random.random() < CXPB: # cross two individuals with probability CXPB * U( X2 N5 _7 @0 s0 B1 w0 b: h crossoff = self.crossoperate(offspring)0 w4 D: g3 [1 [, o
fit_crossoff = evaluate(self.xydata, crossoff.data)# Evaluate the individuals . f+ d. ~" I6 W7 K' y7 p% | 4 d; Z; F) O% B% }4 \ if random.random() < MUTPB: # mutate an individual with probability MUTPB& E, y' @6 z* D; u/ B# B- k+ O
muteoff = self.mutation(crossoff,self.bound) 4 t" V6 V' n6 d+ r fit_muteoff = evaluate(self.xydata, muteoff.data)# Evaluate the individuals - l3 z9 s5 X) m+ N; _. e nextoff.append({'Gene':muteoff,'fitness':fit_muteoff})1 U! w) l, r$ l
9 G# J9 v( E2 R # The population is entirely replaced by the offspring ^. [( i, S' M- ^& t
self.pop = nextoff , I) V6 v7 H3 R% r2 ] * y9 C7 ^0 m, s' I% U% R, Y # Gather all the fitnesses in one list and print the stats 8 A4 G$ y) p& `4 Q) v fits = [ind['fitness'] for ind in self.pop]' S7 Y* ~2 h% D+ a' _
2 C; [( f; l: h length = len(self.pop) 5 [4 a+ ~5 K% r8 o: |/ z mean = sum(fits) / length 5 @+ H, T& z; u( E1 G' c sum2 = sum(x*x for x in fits) 0 W& ^4 J. d! y) O t$ g: [ std = abs(sum2 / length - mean**2)**0.50 r }2 Y& q5 Y6 e
best_ind = self.selectBest(self.pop)* Q, t. M* q4 B4 e
! b% \8 |7 [1 @
if best_ind['fitness'] < self.bestindividual['fitness']: , `8 g6 e. |/ { self.bestindividual = best_ind ( O2 O# I9 H* F9 W3 G# d& M ! {' W* W+ q! G/ b0 E7 { M2 L print("Best individual found is %s, %s" % (self.bestindividual['Gene'].data,self.bestindividual['fitness']))$ z# N4 @- m; |/ f8 W6 {
print(" Min fitness of current pop: %s" % min(fits)) & j, \" z6 S( f1 e4 D print(" Max fitness of current pop: %s" % max(fits))4 m5 [+ |& L1 [2 T
print(" Avg fitness of current pop: %s" % mean)' W; N9 Q8 q q8 K
print(" Std of currrent pop: %s" % std)& v3 X' x1 o( V# E3 b6 q1 D! W3 Q
* Y" ^* w# X% G; Q6 h print("-- End of (successful) evolution --") 7 b# x5 R5 @7 A/ s* N
0 @# ?$ l5 R! U& }+ Y( e
if __name__ == "__main__": 1 M. c4 |/ ?( X' ~' j/ l6 O9 T1 `& I7 o5 n
CXPB, MUTPB, NGEN, popsize = 0.8, 0.3, 50, 100#control parameters , o$ k! f$ U3 O n' C: @" H( _2 _ % J* t( p5 f) y# J. B# m9 i up = [64, 64, 64, 64, 64, 64, 64, 64, 64, 64]#upper range for variables ; H$ Q# s) _- S& }: g low = [-64, -64, -64, -64, -64, -64, -64, -64, -64, -64]#lower range for variables / ?- m$ z X3 x6 F' D/ X parameter = [CXPB, MUTPB, NGEN, popsize, low, up] ! D7 e4 F' |% Z7 C* _; f7 Z4 ~ ^9 X4 d, y/ F9 @* E$ N
run = GA(parameter)' ]0 F0 z+ w( T8 l6 l6 a
run.GA_main() ) F0 @1 A1 J# M———————————————— 3 o$ h3 z9 A* R% y* B0 a' j版权声明:本文为CSDN博主「bible_reader」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。: E1 M8 z( G! r( v2 }: e, B ]
原文链接:https://blog.csdn.net/bible_reader/article/details/72782675 P; \/ w( L, | $ t6 r( M0 c5 E3 z2 s! I0 H 9 O y1 T3 t3 i; s$ ~