在本文所给出的代码功能为使用PyTorch实现的简单的对比度相似度计算器。基于逻辑回归模型。它使用灰度级差异作为特征,来评估输入样本对的相似度。$ ]( k! x# ^6 |# J3 @
以下是代码的解释:
# F( _- N. Q( U6 }6 W8 J7 u- HmyDataset类:这是一个自定义的Dataset子类,用于定义数据集。它接受输入数据X和相关的关联列表related作为参数,并实现了__getitem__和__len__方法。在__getitem__方法中,根据随机生成的标签should_get_same_class选取同类或异类样本对,然后根据索引获取样本和标签,并返回。__len__方法返回数据集的长度。 logistic_similiar类:这是一个继承自nn.Module的PyTorch模型类。它接受输入特征的维度in_feature作为参数,并定义了一个由线性层和Sigmoid激活函数组成的网络结构。在forward方法中,它计算输入对的绝对差值,并通过线性层和Sigmoid激活函数输出相似度分数。fit方法用于训练模型,接受输入数据X、关联信息related、批次大小batch_size、优化器optimizer、损失函数criterion和训练轮数EPOCH作为参数。在训练过程中,它使用DataLoader加载myDataset生成的数据批次,并计算损失并更新模型参数。prefict方法用于计算两个输入样本对的相似度,接受输入样本X1和X2作为参数。 ' j* ]+ M0 V3 [( W! s/ m) L' w3 r/ Q
这段代码的作用是训练一个逻辑回归模型,用于计算输入数据中样本对的相似度。通过调用fit方法,可以传入数据集、相关信息、优化器和损失函数进行模型训练。然后,可以使用prefict方法来计算任意两个输入样本对之间的相似度。 , ?; q" a5 j- O; U `
附件如下
, L/ {" i2 x1 b
6 t7 A& W; v$ @& D7 [& a j# a |