在本文所给出的代码功能为使用PyTorch实现的简单的对比度相似度计算器。基于逻辑回归模型。它使用灰度级差异作为特征,来评估输入样本对的相似度。* Q6 a" v6 M$ t, _/ }
以下是代码的解释:
8 ~7 y M& {, {' D$ K6 m( T' cmyDataset类:这是一个自定义的Dataset子类,用于定义数据集。它接受输入数据X和相关的关联列表related作为参数,并实现了__getitem__和__len__方法。在__getitem__方法中,根据随机生成的标签should_get_same_class选取同类或异类样本对,然后根据索引获取样本和标签,并返回。__len__方法返回数据集的长度。 logistic_similiar类:这是一个继承自nn.Module的PyTorch模型类。它接受输入特征的维度in_feature作为参数,并定义了一个由线性层和Sigmoid激活函数组成的网络结构。在forward方法中,它计算输入对的绝对差值,并通过线性层和Sigmoid激活函数输出相似度分数。fit方法用于训练模型,接受输入数据X、关联信息related、批次大小batch_size、优化器optimizer、损失函数criterion和训练轮数EPOCH作为参数。在训练过程中,它使用DataLoader加载myDataset生成的数据批次,并计算损失并更新模型参数。prefict方法用于计算两个输入样本对的相似度,接受输入样本X1和X2作为参数。 1 Y: f( J) @. Z! ~
这段代码的作用是训练一个逻辑回归模型,用于计算输入数据中样本对的相似度。通过调用fit方法,可以传入数据集、相关信息、优化器和损失函数进行模型训练。然后,可以使用prefict方法来计算任意两个输入样本对之间的相似度。
1 [) l9 W$ `/ Y4 t; D附件如下
5 ^& _' S0 w7 @8 Z8 `: w& o
- a' W5 r4 d9 q$ Q2 h+ V |