- 在线时间
- 463 小时
- 最后登录
- 2025-6-15
- 注册时间
- 2023-7-11
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 7340 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 2780
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1156
- 主题
- 1171
- 精华
- 0
- 分享
- 0
- 好友
- 1
该用户从未签到
 |
本例用RBF网络拟合未知,预先设定一个非线性函数·如式(7一1)所示,假定函数解析式不清楚的情况下,随机产生x1x2,和由这两个变置按式得出的y,将x1,x2作为RBF网络的输入数据.将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 y=20+x1^2-10cos(2Πx1)+x2^2-10cos(2Πx2). E9 c4 G R4 X; B
在使用精确(exact)径向基网络来实现非线性函数的回归例子中,共产生了301个样本,全部作为网络的训练样本,使用图形可视化来观察拟合效果。
- D) K5 g0 i6 k8 ^* [0 K在使用近似(apprximate)径向基网络对同一函数进行拟合的例了中,共产生了400个训练数据和961个验证数据,使用400的个训练数据训练RBF网络后,使用训练好的网络来预测961个验证数据的结果,并通过可视化的方法观察RBF神经网络的拟合效果。0 j" g+ {0 E8 B% U: B& q
使用ecxact释向基网络来实现菲线性的函数回归〈chapter7_1.m,代码如下5 A( p, J/ | D/ w( Z9 K
( X; H; d, e9 F% D+ c w* q, D
下面用approximatcRBF网络对同一函数进行拟合〈、hapter7_2.m)。" |, J! q8 [1 \% u9 h
) g$ c3 }# j& C6 c
) ?& F* m O9 z+ B3 s s# w, }2 L
|
zan
|