- 在线时间
- 471 小时
- 最后登录
- 2025-8-11
- 注册时间
- 2023-7-11
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 7621 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 2866
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1160
- 主题
- 1175
- 精华
- 0
- 分享
- 0
- 好友
- 1
该用户从未签到
 |
本例用RBF网络拟合未知,预先设定一个非线性函数·如式(7一1)所示,假定函数解析式不清楚的情况下,随机产生x1x2,和由这两个变置按式得出的y,将x1,x2作为RBF网络的输入数据.将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。 y=20+x1^2-10cos(2Πx1)+x2^2-10cos(2Πx2)9 h# ?/ ]0 S( [. g0 b1 W6 a
在使用精确(exact)径向基网络来实现非线性函数的回归例子中,共产生了301个样本,全部作为网络的训练样本,使用图形可视化来观察拟合效果。
. a, ?9 B, \. I4 [3 ?8 h在使用近似(apprximate)径向基网络对同一函数进行拟合的例了中,共产生了400个训练数据和961个验证数据,使用400的个训练数据训练RBF网络后,使用训练好的网络来预测961个验证数据的结果,并通过可视化的方法观察RBF神经网络的拟合效果。
! j5 X! e* l% F9 y使用ecxact释向基网络来实现菲线性的函数回归〈chapter7_1.m,代码如下
# a7 B" l4 @. V# ]8 m
5 H6 \0 @) d- t, X& C4 O; [下面用approximatcRBF网络对同一函数进行拟合〈、hapter7_2.m)。
; h8 S: k6 L3 C( u# V7 u b. \2 A1 n: |1 m( E
: K& U3 i; p! m) b" ^
( f2 s M8 d5 B |
zan
|