- 在线时间
- 472 小时
- 最后登录
- 2025-9-5
- 注册时间
- 2023-7-11
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 7679 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 2884
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1161
- 主题
- 1176
- 精华
- 0
- 分享
- 0
- 好友
- 1
该用户从未签到
 |
霍夫曼编码是一种变长编码技术,用于将符号映射到不同长度的二进制码,以实现数据的有效压缩。该编码方法基于符号的出现频率,频率越高的符号分配越短的二进制码,从而减小整体编码长度。2 k; a& r* s# K2 |6 g% w# I' I8 o
编码过程:
% c# O- a# ^/ f( J3 q7 w
0 H' v. v4 v6 U9 M# c. \* A- q M1.统计符号频率: 对待编码的符号进行频率统计,以确定它们在数据中出现的相对频率。0 w: p3 T# Y9 ^! _
2.构建霍夫曼树: 将每个符号看作一个节点,以其频率作为权值。通过反复合并两个具有最小权值的节点,构建一棵二叉树,直到所有节点合并为树的根节点。合并过程中,新节点的权值为被合并节点的权值之和。6 ^8 H1 u4 J5 Y. }
3.生成编码: 从根节点出发,沿着左分支走为0,沿着右分支走为1,记录路径上的0和1,即可得到每个符号的霍夫曼编码。
" d( B" R; e0 e
" M5 w# k5 o8 P3 D4 R译码过程:9 u0 Q& G/ C5 w3 m: U
- T# t h5 u& Q, T3 P4.根据霍夫曼树进行译码: 从根节点开始,根据接收到的二进制序列的每一位,沿着树的路径向下走。当遇到叶子节点时,即可确定对应的符号。
, d$ ~* ]: p+ s! h3 d
; K4 |) ]. [( c# I7 s" z霍夫曼编码的主要优点是对于频率较高的符号使用较短的编码,从而实现了有效的数据压缩。; x, W- B* M7 m* @8 w* F9 L7 w/ i
) W" Q: I1 z( N: T$ z) N& s$ y2 j) z+ O# R5 J
具体实例结果如下:0 H" g1 K) X1 L) i m+ p, S
5 z- |- k1 S. q6 q. W& g! s' X* h
$ ^9 B# P% k5 e1 r4 _# i$ P( h1 B
' G3 ~) |( @. d5 H( I' t6 k$ m: y$ d1 I* r, P$ {
|
zan
|