n% t+ b3 r6 F _+ K s = input('<最小二乘>\n输入已知点的x坐标:(回车表示[0,1,2,3,4,5,6,7])\n', 's'); " \% f; O2 l6 I if isempty(s)4 L' V- k. F$ ~) \% f4 p" L8 P
s = '[0,1,2,3,4,5,6,7]';2 [1 Q& {- {5 E) w! T7 ?
else' m- t: R% l4 j" J& e
if (s(1) ~= '[')- {8 |: q s/ E3 }. g9 @% Z1 U
s = strcat('[', s);* m" e- g3 v& D' T, t" u M
s = strcat(s, ']'); " \4 s. V0 d# E0 Y" i! F2 L2 ` end - G3 p, @0 X. l7 z5 i$ | end ) N5 G/ G/ Z1 ^% `- z* t x = sym(s);+ ]1 m9 x7 V, N" |4 N, \, N
- v" @3 }. V4 M. [# | P2 `# y) \
s = input('输入已知点的y坐标:(回车表示[3.95,6.82,9.78,12.91,15.74,19.26,21.73,24.07])\n', 's');9 D1 Q1 P, a% x: [6 |( x e
if isempty(s) ; T5 i* d7 C2 N8 v3 ^" [' J7 q s = '[3.95,6.82,9.78,12.91,15.74,19.26,21.73,24.07]';4 T; h' I! @- L* t2 }( f, t
else1 j+ M& P; F, J' \- p1 k
if (s(1) ~= '[') 0 d' t q) F6 F s = strcat('[', s);% }& D' `* q' u# F; V
s = strcat(s, ']');! S# x% l4 H& T* V, H; k; O/ }
end9 i2 W, t: c$ A/ ?- E
end . U B4 ^5 @9 E! f y = sym(s); P4 v& i4 O- J* y7 C
sz = size(x);' o/ B* W( {; c: B9 \* F m7 f \
sz = sz(2); 6 o+ x4 A( w) b4 b. Q. n4 _/ R/ q n = input('输入多项式次数n:'); 9 j+ X: C9 l) E if (n + 1 > sz) ( P& ^" q! k8 X7 p( E n = input('多项式次数需要小于已知点个数,请重新输入n:'); - d! X: }' p: ]5 F. z end2 |0 j7 C' g6 ?$ ~' N' _
if (n + 1 > sz) ; o2 o. s) {' R& I9 ~ error('多项式次数不能小于已知点个数!');* R$ v1 E: r- K0 X) S1 F, K
end! ], }6 Y8 M4 |2 f
fp = s_fitpt_p(x, y, n);6 {7 R/ H ]5 K* E! Z* j
- }9 d) F# {" ]! D5 r! \( ~ % 绘制原始数据点和拟合曲线 8 D s, u* m* r3 g plot(double(x), double(y), 'r*') 8 j' e- q. Q- _7 t) E hold on" W5 s: y& y! g* E
a = double(x(1)); & t& c4 ~- b" v w Z6 o- k2 S b = double(x(sz)); 3 d7 C: i I( y" e3 ?6 M, u x = a:abs(b - 1)/100:b;5 q _9 V) P6 s9 g0 E6 K. U% u9 {
y = subs(fp, x);# j' O* D* h8 r/ L% \
plot(x, y)) {1 B% T+ _( ^ [: f% m. b
end 6 j7 p* S# O+ u" ? / ~- H R! ~- b# N3 ^% N% A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 d7 }* r5 g0 P* D( k+ o
3 J1 z3 k. O: |& K, H8 _( Vfunction f = s_fitpt_p(x, y, n) 3 i' n- x- j4 E8 H9 v % 用 n 次多项式实现的最小二乘法' A- B# Q0 ?: Y# X
* Z* u1 G: Q6 n' N0 j sz = size(x);+ o# d. {4 O0 b* i
sz = sz(2); 9 q" Q- _- V$ q% b6 } A = zeros(sz, n + 1); * ]! D' k5 i, q% Q2 [ `; D: \ v = vh(n); * h. {# _, C* Q5 n3 N, { for i = 1:sz : Y8 s( A/ p& p% c A(i, = subs(v, double(x(i)));3 K8 A- Y. B" P Z g8 T
end7 Z* E3 X O: ?1 e8 f* h
f = linsolve(A' * A, A' * y'); $ Y( m( p! h8 a& D3 ]2 t f = vpa(f, 4); 8 O$ z/ O0 x+ U f = v * f;5 ^! o; w2 U6 D
end: u; ]; z% ~6 S2 M
# C" L; b& R; k" H5 I. F( p
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2 ~$ h/ K% {! H* w! r ; d, d# e. J" Lfunction v = vh(n) ; s( F. T1 X6 C- d" ]% C % Create vector in horizontal style, such as 3 l) m+ O+ W5 o( k % v = [1, x, x^2, ..., x^n]5 c' u2 S3 t/ k7 B3 L
* W( { h5 [- ?. l U* y- f
if (n < 0 || n > 9) 7 D6 g; l4 |7 I: S error('Make sure ''n'' is in range of [0, 9]')) L6 Q9 \/ c' L$ t* p$ d: I
end' R3 W( n9 t$ f! L& _# P+ e
s = ''; 2 l9 W$ U+ Q1 t) |- \, M for i = 0:n/ `' z9 @0 i) ~! S k* O' }, M
s = strcat(s, ',x^');1 D D! F& t4 \: H
s = strcat(s, num2str(i));/ d+ D5 R" W0 m$ O9 c9 m+ v. j
end2 L* `5 b8 ]6 K% u. E4 D" G; _# _
s(1) = '[';$ ^& j- ?0 L8 Q5 V, m
sz = size(s);# R6 r9 Y3 a5 }3 L
s(sz(2) + 1) = ']';4 y4 U& h3 }8 h. U
i" A! @0 @0 n6 H' a7 v
v = simplify(sym(s));9 c2 {1 L3 s# A- I7 ?
end( b( Y# w- x9 g
" j5 X+ M( j) k
这个脚本首先获取用户输入的已知点的 x 和 y 坐标,然后使用最小二乘法进行拟合。最后,脚本绘制了原始数据点和拟合曲线的图表。 " {# B& R# m$ r5 N" Q$ ~" W1 R' `1 v/ |& n" o Q# \" p4 Q1 I