这是一个 MATLAB 脚本,用于进行最小二乘法拟合。脚本首先要求用户输入已知点的 x 和 y 坐标,然后输入拟合的多项式次数 n。脚本使用最小二乘法拟合数据,并绘制了原始数据点和拟合曲线的图表。以下是对代码的主要部分的解释:% {; m1 a$ _5 J/ v9 I3 M; M+ H: Q
function fp = fitpt() O7 a% C8 |) m1 C: i) { % 最小二乘( n% t* u) D+ d2 T6 A$ h( C; B Y
% 基取 {1, x, ...}$ H' g( |' b! G# y: g
% fitpt.m 0 g5 }! h7 } k; c! m! s- R+ H1 p4 {( m' A1 f
% 默认算例为课本:P65,例3.26 A2 K, {0 ]2 r; E, U& ^" e: ~
% x = [0,1,2,3,4,5,6,7] ; F3 x2 h4 M6 n5 ?+ ~7 Q( M % y = [3.95,6.82,9.78,12.91,15.74,19.26,21.73,24.07] " ^% _( V& \6 |) S G, m % 结果:P(x) = 4.005 + 2.936x 平方误差=0.6162 / l$ r! z: @- t' }8 |4 o# q# }% k! g) D
% MatLab函数:polyfit(x, y, n)) f2 t1 C( U" W+ z" Z7 z9 W4 N
6 d: [) J/ N0 ]# C
s = input('<最小二乘>\n输入已知点的x坐标:(回车表示[0,1,2,3,4,5,6,7])\n', 's'); 5 a% z8 S! {8 i, M. u9 ?' s5 g# U8 T if isempty(s) 1 @2 h- z0 {( Z: G, Z s = '[0,1,2,3,4,5,6,7]';4 O; v8 N( B/ j2 i" w4 |
else# o- b1 J4 x e" C2 k4 T
if (s(1) ~= '[') 0 n( @4 D! w5 R$ t- ^- y# X6 y s = strcat('[', s); ! e! P% K5 \ ^& a F& h s = strcat(s, ']'); ( \ ~7 p7 ^0 E% ]+ O6 i* T' R M) O end : E3 K* B7 k/ A end ! k5 s2 c8 e8 @# [ x = sym(s); z) c: V, C8 W$ A6 m( b; N4 k
- ]! C3 Y+ x$ U4 d8 E' B s = input('输入已知点的y坐标:(回车表示[3.95,6.82,9.78,12.91,15.74,19.26,21.73,24.07])\n', 's'); : p! l+ U: {5 x7 c if isempty(s) 1 @5 G7 g; H# {0 @9 g- h s = '[3.95,6.82,9.78,12.91,15.74,19.26,21.73,24.07]';, T8 K3 q3 {* w; ~7 \
else! n7 e1 R$ A. m# g. |
if (s(1) ~= '['), w# o: |+ d9 o8 O) {. D/ r) A* O
s = strcat('[', s); 3 i0 }$ c8 i( v' R3 Z6 i5 p s = strcat(s, ']');6 U1 s7 P5 @6 r8 W( V( ~' {4 f
end % O- g7 U& B) D+ U% i- O end. y B5 w! ^' O6 B9 O
y = sym(s);' E6 M; p! i0 I0 W
sz = size(x);2 m+ F+ s" p& D! x; m% X
sz = sz(2); O, K$ [6 s4 `! l1 [ n = input('输入多项式次数n:');6 h( @: |+ {% z
if (n + 1 > sz) ; F, R- o0 T% k( b6 c# Y r n = input('多项式次数需要小于已知点个数,请重新输入n:'); # Y. e5 |$ p& q" d+ _! F% J: M end& N1 n6 `! g1 q$ g
if (n + 1 > sz) ; E8 Y* V& t" P) x. c: W# F7 x2 Z" u error('多项式次数不能小于已知点个数!');0 q6 }# Q# {9 W
end 3 n& @7 [* r* v$ l fp = s_fitpt_p(x, y, n);0 T% A+ s3 g% }) W S1 h2 O
; _/ \3 p0 k2 F8 z8 A- t* ~
% 绘制原始数据点和拟合曲线 6 m) J8 y! [& E8 B& F- F/ O8 U plot(double(x), double(y), 'r*')+ d- v+ \4 p& G3 P2 |
hold on ' r& |- P9 y# Q: R/ q a = double(x(1));; z. ?" |: d9 ] O5 x' F
b = double(x(sz));6 ~4 m# M! | O/ X
x = a:abs(b - 1)/100:b;% ~) L; r" O; j$ ^- x5 b H% U
y = subs(fp, x);( S1 X. j1 X/ G. L
plot(x, y) ( [! k. c% J; Z4 n; j+ k& eend ' y' k# s) X0 N/ f# Z1 x) b; q$ v1 k! \8 X! c* ? m; P4 y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7 B. y% }* I J+ J/ o
: A7 K7 F; e! T8 q7 n- @2 Yfunction f = s_fitpt_p(x, y, n) $ k# [ w& u; M7 | % 用 n 次多项式实现的最小二乘法, n0 R" g. [" u& v" X% |
a. e- ?& w+ B/ @ R. F J1 k
sz = size(x); * h5 Q- Y* P) u' U3 V" O4 ~ sz = sz(2);; t6 T& ~. m8 F0 U0 w" c x5 ~
A = zeros(sz, n + 1);. o' u5 A; p3 z1 c
v = vh(n);- _) n9 W4 k1 a* j5 O
for i = 1:sz 9 C: z- F" J( I+ S4 w A(i, = subs(v, double(x(i))); & X( D# V" v% s1 G0 m) a end, l& v$ Q, P1 m0 R: q0 Z% B' [
f = linsolve(A' * A, A' * y');3 m9 Z! E6 d$ \, G, u
f = vpa(f, 4); # k6 s2 p6 W/ }/ u2 J0 r2 V% ` f = v * f;- x! `9 y& i2 | C; o, I
end 8 f$ N( t, a' ~4 H3 {& m3 J0 x) x. _1 J1 _7 `2 T) [
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b0 Q# W6 ?- Q+ [$ O! C
1 t5 e0 D" l5 {7 x( r6 pfunction v = vh(n)$ O- g+ e! `& B! \) L8 ~
% Create vector in horizontal style, such as ; ]7 t: [1 [; p5 N5 u0 b# l# c % v = [1, x, x^2, ..., x^n]$ q8 a* O, t' ?9 k! {, n
6 x; z7 E' `$ S9 {5 i& Y r
if (n < 0 || n > 9)4 C2 P+ s0 @4 S) v4 n
error('Make sure ''n'' is in range of [0, 9]') 2 j. S, F" o8 x+ a end 6 Z9 z9 H* _* H s = '';6 v8 m+ l o% G
for i = 0:n $ b5 K" P" `6 J) G. b# q, o5 a3 h s = strcat(s, ',x^'); ( x$ s# F9 S& c. X! M! P s = strcat(s, num2str(i));- \ H( N8 F& q! p3 M2 ~( C
end4 |/ ]' k. ^2 w5 P2 m
s(1) = '[';7 I7 {: e5 o' `; K
sz = size(s); }0 u5 \0 i; ], Q5 V
s(sz(2) + 1) = ']';& L" P" c( k" l# ~( G+ h( ?
. v; Z J' f' H' o" m v = simplify(sym(s));/ U# \$ o9 `' e n% T! b
end 3 ^. U' w t, O% h( `+ b' g3 I0 b - H7 `& ~$ V" e* {这个脚本首先获取用户输入的已知点的 x 和 y 坐标,然后使用最小二乘法进行拟合。最后,脚本绘制了原始数据点和拟合曲线的图表。4 C7 o2 }8 U/ K/ _; K6 C