这是一个 MATLAB 脚本,用于进行最小二乘法拟合。脚本首先要求用户输入已知点的 x 和 y 坐标,然后输入拟合的多项式次数 n。脚本使用最小二乘法拟合数据,并绘制了原始数据点和拟合曲线的图表。以下是对代码的主要部分的解释: , T6 l2 W# _! \# o9 {$ x. V- ^# Nfunction fp = fitpt()& B% B7 \6 ^4 T1 U+ l
% 最小二乘1 x$ [2 _& K- @& p6 S
% 基取 {1, x, ...}5 a/ G" b6 X; h9 W
% fitpt.m' X6 A3 M/ x/ F( _) p) G
8 u4 a2 n% n5 W6 ]0 d0 T5 ]' s
% 默认算例为课本:P65,例3.2 * ?1 F2 k. K: x8 {$ z7 p1 X % x = [0,1,2,3,4,5,6,7]0 Y0 B5 b, s7 x! I6 J
% y = [3.95,6.82,9.78,12.91,15.74,19.26,21.73,24.07]; @3 Z) L$ k$ Y. b8 }/ O: b
% 结果:P(x) = 4.005 + 2.936x 平方误差=0.6162 q- n# f9 Q! s- ^$ x; m 7 n3 U B# x8 Q! n+ D @/ D % MatLab函数:polyfit(x, y, n)8 Z x8 g' W; O5 e1 z
! S( v" G3 h9 f, p( p7 e8 z) P s = input('<最小二乘>\n输入已知点的x坐标:(回车表示[0,1,2,3,4,5,6,7])\n', 's');" Z0 A& ?" t/ L H
if isempty(s)5 P2 q& g7 M& ?+ B9 u, ?/ i
s = '[0,1,2,3,4,5,6,7]';3 q k, k. f# r+ {: T8 T
else 0 X& O$ p2 s* `! ?# e+ y if (s(1) ~= '[')& t5 h' n0 A% s$ H& N
s = strcat('[', s);. [3 q$ ^. a8 ~; M
s = strcat(s, ']');8 [- W$ y. R, o. F. Q( O
end # A4 @( D% w* [$ N a end4 K, u f! e# Z$ d& ?
x = sym(s);: g3 [+ {, @/ i, D
8 \2 K& h+ Q) J s = input('输入已知点的y坐标:(回车表示[3.95,6.82,9.78,12.91,15.74,19.26,21.73,24.07])\n', 's'); % w( A6 O" ?$ Y j if isempty(s)+ s+ H; W7 o8 u
s = '[3.95,6.82,9.78,12.91,15.74,19.26,21.73,24.07]';: }8 j3 b/ `+ \
else ' I8 A6 D) D: w' ] if (s(1) ~= '[') ! W7 C1 P' Z# [: I3 U* x s = strcat('[', s);; A T% ?( C, d" c- _; U
s = strcat(s, ']');# s, L) _8 A% y
end 4 c, s) S' k- z( D end , y$ J6 [" H4 J+ G. q( h" v y = sym(s); 3 _5 o9 m' i* E1 h sz = size(x);5 K# U3 Q7 @* i% B$ e& r( N
sz = sz(2); ; H+ s* p/ }/ a# b* o n = input('输入多项式次数n:'); - a6 u5 b! g( r' Z4 t if (n + 1 > sz)9 M4 m. `( L) V( U7 u
n = input('多项式次数需要小于已知点个数,请重新输入n:');- K) `, s/ \ w: |' Z3 r9 E
end' M3 L: U b4 {- w. E
if (n + 1 > sz)' `, b, M! d# o7 ^
error('多项式次数不能小于已知点个数!');. u# d. ?' ?4 y0 y9 F7 ]) f
end' e- Y1 u/ C3 u2 ]- v
fp = s_fitpt_p(x, y, n);& ~2 @" v L' r2 j4 K
* I5 @3 _6 J; |* `
% 绘制原始数据点和拟合曲线1 `! K! A+ t( a& @- |
plot(double(x), double(y), 'r*')% T/ t4 A9 i% _
hold on & o/ e; |9 M. Y) j1 X6 I a = double(x(1)); " X1 Y( W* G$ E7 M2 N# m" k3 O, ~$ e b = double(x(sz));" W! s& l% V- O, I& N. G
x = a:abs(b - 1)/100:b;& T6 q) {+ Q9 d; v6 @( T5 t7 |
y = subs(fp, x);( Y J" b/ T4 c0 `: x" [& f
plot(x, y)0 U( ?; f* G$ B, Y( L \3 G
end$ r6 n2 d- h: T3 g) d! G1 A; V
- u) J5 J' V- b4 t: g+ [$ |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7 B6 u6 f3 Y+ o. \, d; u P
1 B5 j" h5 C7 _2 E5 S4 @' h
function f = s_fitpt_p(x, y, n)/ p9 `/ u0 u9 }
% 用 n 次多项式实现的最小二乘法1 ~, u& {$ g4 @% ?
3 J+ p' o2 i) P$ F U; \
sz = size(x);4 L/ b$ Q7 p% }3 j1 x) M
sz = sz(2);8 |! ?+ [# s/ Z( n' T Q
A = zeros(sz, n + 1); % [& F q- P9 T j2 e( t v = vh(n); 0 ?9 o8 ]9 ^9 s4 I/ T$ o+ Z for i = 1:sz ( a' W9 t* h/ F: a! W A(i, = subs(v, double(x(i)));( k: b6 Z" \6 m4 d) B: g n: x
end 2 W: w( N$ L9 r" N4 J1 c+ e7 ^ f = linsolve(A' * A, A' * y'); 7 v: J9 r! C* o) f2 X1 v0 r7 S' q f = vpa(f, 4);4 D& Q9 B$ q1 ]- Q
f = v * f;5 [1 I6 s9 N& a# E& b& X
end3 O, e7 j+ O, q. S
+ h8 H" C6 ?; M; Z# W1 |" ]%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7 L4 G$ g! ?: g7 e. g3 I' j, e 0 A+ W) A6 f( J1 P( {/ E; _function v = vh(n) 8 q; R+ u- x+ x % Create vector in horizontal style, such as ; }) Q9 c+ I7 ~" Z' S % v = [1, x, x^2, ..., x^n] ) y) X$ ^1 N' ` 4 u# s2 ?& |+ |$ F/ x4 B: {7 F if (n < 0 || n > 9) 3 l5 p3 W' f7 u, C) @4 E error('Make sure ''n'' is in range of [0, 9]')5 y/ |: E& a- O5 P
end - l: m# p5 T: |, L) ^+ g s = '';# n1 a6 M+ I' `0 u3 }0 b$ u o
for i = 0:n Y6 a7 J3 G8 e8 o
s = strcat(s, ',x^');) I O) G( l/ f0 B; F
s = strcat(s, num2str(i));% q1 Z( v. u* ]0 b/ C7 ~
end 4 B0 z p/ k5 ^, U) T s(1) = '[';; [7 p+ S. {6 A2 `' B% [
sz = size(s); 2 ?3 V4 C9 O6 p d; q+ F7 J s(sz(2) + 1) = ']'; + h' O3 G- r( _% ^8 T0 A - l; M( G0 C4 Q, V% `% S6 J) H" S8 k$ u v = simplify(sym(s));, o' h U! c1 I
end1 H+ P$ ^$ [2 C) h$ S5 f/ j
! j; S4 d: p0 M+ d0 m2 `. K% ~这个脚本首先获取用户输入的已知点的 x 和 y 坐标,然后使用最小二乘法进行拟合。最后,脚本绘制了原始数据点和拟合曲线的图表。8 } Z' h$ E/ n, V