- 在线时间
- 367 小时
- 最后登录
- 2015-10-7
- 注册时间
- 2012-4-4
- 听众数
- 29
- 收听数
- 0
- 能力
- 0 分
- 体力
- 2850 点
- 威望
- 0 点
- 阅读权限
- 60
- 积分
- 1102
- 相册
- 1
- 日志
- 1
- 记录
- 1
- 帖子
- 515
- 主题
- 26
- 精华
- 0
- 分享
- 0
- 好友
- 96
TA的每日心情 | 衰 2014-6-9 20:45 |
---|
签到天数: 290 天 [LV.8]以坛为家I
 群组: Matlab讨论组 群组: 2013年数学建模国赛备 |
\documentclass[twoside,a4paper,CCT]{cctart} % 这是Li Dongfeng改的文件头9 e: `6 Y. l. z. M
\usepackage{amsmath,amsthm,vatola,makeidx,amssymb,amscd,headrule} % 这是Li Dongfeng改的文件头% G5 `) r6 M9 T& p2 Q8 k& e) x6 d
\usepackage{amsfonts} % 这是Li Dongfeng改的文件头
" g0 C9 f9 m! M%\documentstyle[twoside,headrule,vatola]{carticle} %这是原来的文件头
; o$ [$ E M. D O1 T7 t%\input amssym.def
6 g5 ^: e' e1 E\usepackage{graphicx} %这是原来的文件头( K( ]" T/ |6 f: j% T7 u2 I7 U1 q
\input scrload.tex %调用花体字: {\scr A,B,C,...}
6 y7 L' p- ~1 d" y5 Q& G, u%--------------------------Page Format--------------------------
/ x; D' x4 m: D$ m2 A\headsep 0.2 true cm \topmargin 0pt \oddsidemargin 0pt \footskip3 q) p2 r. j% _' O! q$ x
2mm \evensidemargin 0pt \textheight 21 true cm \textwidth 14.7
0 g: K p: V5 w( g; ?true cm \setcounter{page}{502}
% v5 b D; ], b5 G# O%\parskip 0.2cm
/ U. Z2 ~4 N) M\parindent 2\ccwd
+ A, T9 j8 g4 c* V1 k4 w! U2 `\nofiles/ {% w4 e& E8 I! R7 N' _ p
%---------------------------------------------------------------
% @" F& s4 V. ]2 G. ~" V\def\sec#1{
- v, F1 {( e% h* n3 s8 O: W\vskip.12in \noindent{\Large\bf\zihao{-4}\heiti #1} \vskip.1in}) L* j: j8 n: K) d0 d. O. ]( ?
\def\subsec#1{8 B& |$ ~' P# X+ |1 e/ u
\vskip.1in \flushpar{\zihao{5}\heiti #1} \vskip.1in}
& b( H8 y& t- F0 E$ v/ C7 @9 J# T\def\de#1{{\heiti\bf #1}\quad}
3 r& d/ Z+ j5 W: J7 q8 `9 E$ f1 K* f& d V4 O- U
\begin{document}/ U0 }5 E2 Q( B8 U7 o$ m7 U
\TagsOnRight \abovedisplayskip=10.0pt plus 2.0pt minus 2.0pt
: v) f' |; F4 H6 @% n7 I. O\belowdisplayskip=10.0pt plus 2.0pt minus 2.0pt
# d) O2 J, k" z' e%====================================================================
1 g& Y" H$ H+ ?5 j\catcode`@=11 \long\def\@makefntext#1{\parindent 1em\noindent1 B: p: w, E% B: t ~1 c' G5 l
\hbox to 0pt{\hss$^{}$}#1} \catcode`\@=12
' ^; k* t( R4 m& N! X& n) ?%====================================================================& N0 q' h6 q7 ^% R& z
! b) E, F, g/ e3 u0 J4 Z
\renewcommand{\baselinestretch}{1.0}
# j! h: d8 H) q! W- m
: Y6 q! c/ y B9 a$ R8 j! \& p. T4 Y z P
\newfont{\htxt}{eufm10 scaled \magstep0}5 O3 ^8 y7 t' j" b- C3 u! l
%\newfam\euffam
6 T+ V. q4 G* R# | c6 K\font\tenthxt=eufm10 scaled \magstep0 \font\tenBbb=msbm10 scaled: L/ W: W+ v5 g& s2 F
\magstep0 \font\tencyr=wncyr10 scaled \magstep0 \font\tenrm=cmr10
' ^# X$ `! h( D5 p, G% g3 E) Z1 N8 Uscaled \magstep0 \font\tenbf=cmb10 scaled \magstep0. }6 n# f* {5 p8 @7 h7 r* F& @2 ?) E
) X, g) @5 _$ J+ ~
+ [5 g G2 K6 `
\def\cyr{\tencyr}" P$ @7 o0 {2 W6 _
%\def\cyw{\eightcyr}
! u/ m" `' f! K- ~# t" i; V%\def\Bbb{\tenBbb}. V1 m/ M+ U) `8 B7 p% K
%\def\bbb{\eightcyr}
9 }0 i% q$ I3 T# ~" V, a%\def\txt{\tenthxt}
; S v% `& @: U0 [' H- l7 y! D9 Q$ x. z
\def\ST{\songti\rm\relax}, \4 |" I' g9 R6 H+ H0 l# d
\def\HT{\heiti\bf\relax}
. x {$ |/ c- G. y# u0 a1 o\def\FS{\fangsong\relax}
, Z8 t3 C1 Z2 O\def\KS{\kaishu\relax}
1 N7 G0 y& k% O6 B) s) Z\def\text#1{\hbox{\,#1\,}}
$ H: u3 a, ~; X! [6 h7 f\def\pmb#1{\mbox{\boldmath $#1$}}' t% Z% p7 w! ?% ^: [2 _, h* b% ~
\def\Cal#1{{\cal #1}}6 l8 q6 {$ `* ~( T* C+ [
2 W0 @$ l: y1 c1 q9 V\def\CA{\Cal A}
5 n+ J* X2 G; |& d/ h2 i M; F\def\CB{\Cal B}* D4 I3 v- s! H p! Z7 O9 p- t
\def\cC{\Cal C}; b2 x" c) {) Z, Z, A: s/ G5 q
\def\CD{\Cal D}$ A$ u. Z% y- k7 i/ L
\def\CE{\Cal E}7 Y$ D1 ?" u8 E' z' ]+ ^& _
\def\CF{\Cal F}. `( S7 a2 L/ c" S1 J! j4 ]
\def\CG{\Cal G}& M; P0 P" r5 m* G% L, Z) v
\def\CH{\Cal H}. t# n% Q9 D, y0 g* f
\def\CI{\Cal I}, _: ~: b6 [$ K- A
\def\CJ{\Cal J}
6 y" ~8 \! R" t5 s: i" q [" G\def\CK{\Cal K}
: \0 ]& {% m5 p7 m! E0 u o: O\def\CL{\Cal L}6 V; z6 S N! F
\def\CM{\Cal M}+ P- q8 d8 u# ^6 @% G: i
\def\CN{\Cal N}) B& s* C C: ]; S3 o) T& l, y
\def\CO{\Cal O}
( D3 O0 A- Z5 \$ B\def\CP{\Cal P}: P3 ^9 ^7 R3 D4 H# g: u! j
\def\CQ{\Cal Q}6 w. D5 E& }+ V
\def\CR{\Cal R}
0 `3 V6 V4 f* I' r" Z. @\def\CS{\Cal S}5 S* G; ~3 U E6 b8 o
\def\CT{\Cal T}0 h8 |4 k0 z8 ], C
\def\CU{\Cal U}
) S" m6 q2 K4 Q z& I\def\CV{\Cal V}
7 ]$ x1 v/ w* @3 N+ N\def\CW{\Cal W}
. s: w! o) t, h; r\def\CX{\Cal X}
3 z+ I7 l' y) }( A2 z2 C\def\CY{\Cal Y}
* }" k% n h' v9 |/ P\def\CZ{\Cal Z}& T3 n2 R7 \# W! x$ w* ]
\def\BA {\hbox{\Bbb A}}9 a6 f3 @( i, Z1 V" @
\def\BB {\hbox{\Bbb B}}4 G, O) |/ ^/ ^! @, i, ?7 L
\def\BC {\hbox{\Bbb C}}
7 ~) E- b ^5 |1 h" O; }\def\BD {\hbox{\Bbb D}}
* P; P8 y" U5 V3 {+ P8 \\def\BE {\hbox{\Bbb E}}3 G/ `0 C( }. ~( e
\def\BF {\hbox{\Bbb F}}
# E. j& h; N: O8 F\def\BG {\hbox{\Bbb G}}
5 d- g: ^( X1 x5 x u+ x\def\BI {\hbox{\Bbb I}}4 v" T3 u0 x! V2 x/ k5 O
\def\BJ {\hbox{\Bbb J}}
# ^. F, h; Y7 W( Q6 v! Z\def\BK {\hbox{\Bbb K}}
5 m7 e5 l5 p' U6 o: N0 a$ r8 P+ v* |\def\BL {\hbox{\Bbb L}}
; l$ B: ?5 {0 N. r5 f& _\def\BM {\hbox{\Bbb M}}5 d) v0 W! ?( C% R
\def\BN {\hbox{\Bbb N}}
: }( J) d0 L- s# [\def\BO {\hbox{\Bbb O}}
8 w J' t; R+ E7 s. a0 R\def\BP {\hbox{\Bbb P}}( [( C! g% `. c% Z0 ]. |
\def\BQ {\hbox{\Bbb Q}}/ y& ]( F# V' H: A% t, L
\def\BR {\hbox{\Bbb R}}
+ `+ J6 H" `' D* |5 C& b\def\BS {\hbox{\Bbb S}}
; N* |: X" h: |5 [) x\def\BT {\hbox{\Bbb T}}: M/ }! v" h( u- @ ? D5 ^
\def\BU {\hbox{\Bbb U}}/ M* N( s- L; J$ [. o+ n3 `
\def\BV {\hbox{\Bbb V}}
7 A" r4 k' \ H- x9 j\def\BW {\hbox{\Bbb W}}. j- Q& t- A/ l' T$ @: i% Q9 p
\def\BX {\hbox{\Bbb X}}
- n, H8 L w c9 b\def\BY {\hbox{\Bbb Y}}+ W& d! s3 m' | ?* J! l
\def\BZ {\hbox{\Bbb Z}}+ _9 s& O8 |" I7 F0 p* g. F) V
\def\Gh{\hbox{\htxt\char'150}} t; l1 w# A3 e8 x) V" y6 J# z: g- T
\def\GG{\hbox{\htxt\char'107}}
, X- ]5 P( Q! K2 H
8 [. I7 q) E/ n; _+ L1 g\def\text#1{\hbox{\,#1\,}}- j) N4 E* f% W$ A* Q6 V }
\def\pmb#1{\mbox{\boldmath $#1$}}
4 Y! Q$ x( n3 A\def\Cal#1{{\cal #1}}) L/ I% y( d6 u
- ^ v" l! q4 A* Z\newcommand{\orp}{\overline{\BR}_+}, a8 `. h4 q6 b0 ?& `7 ~
\newcommand{\opm}{{\rm op}^{\frac{1}{2}-\delta}_M}
+ q8 [; m4 V2 P+ X' c" b1 h( |\newcommand{\wot}{\widehat{\otimes}_\pi}! I( n, V" C" ?# Q: _! I
/ `! ~3 F( M R%-----------------------作者定义! X" w, F& s+ h5 Y6 M9 D- z; o& N- B
; ~) w2 Z8 n( L* P
6 `/ } Z1 L7 V9 U( R+ R%-----------------------作者定义结束3 Q+ z3 c" h/ T
\def\binom#1#2{{#1\choose#2}}
. y2 ]6 T: b. ?+ o; F# j2 _# A: v\def\qed{\hfill\raisebox{0.1truecm}{\framebox[0.2truecm]{\ } } }8 K) x6 D9 z$ G1 y
\def\su{\mathop{\sum}\limits}; h3 k9 z$ x/ i! f
\def\Cal#1{ {\cal #1 \rm} }
+ J3 a6 j: R9 t, F' v6 v1 D$ p& F, W%---------------------------------------------------------------
1 T5 b6 h. a7 \! ^, o\def\evenhead{{\protect\small{\zihao{-5}\songti \hfill \qquad\qquad
4 X5 I3 h& C) x [- X& ^6 P\qquad} \hfill {\zihao{-5}\songti }}}
9 b( y+ U6 p1 y$ X6 e( R, G\def\oddhead{{\protect\small {\zihao{-5}\songti }
5 ]) n4 S y6 a/ d B\hfill {\small\zihao{-5}\songti 方奇志: Total Dominating Set Games
7 o# Z4 c t) s s}\hfill}}
! F* ~( |( b2 `. R8 V* y%---------------------------------------------------------------& ]3 L% D$ b. ?) L+ b
; J% x5 H& E9 z8 u\vspace*{-13mm}
: ]' N$ B; k& N1 w5 p
! Y( v& u! Q! E$ |\thispagestyle{empty}, f8 y5 d8 F$ N9 s, Q1 {
3 s# d8 H8 P4 \: N
3 x: f( ~6 H% `" w! J. g! A% e%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%4 j+ f1 h8 O- }
% _9 @ B% E, m, G( l6 y7 g) K
3 Z% M2 [( N3 c2 r; z8 O3 B6 x\ziju{0.025} \vspace*{.26in} G; t" m" X5 t9 c; N
\begin{center}
1 P1 f( l9 [7 L7 P{\heiti\zihao{2}\LARGE\bf \huge 序列覆盖映射的注记}%Semi-Fredholm 算子时的应用}- V1 F8 ~% [( ]/ x }, F
%\vskip.1in
+ k# o9 W7 P( Z" |' ?) r2 {7 N%{\heiti\zihao{2}{\bf\huge Semi-Fredholm} 算子时的应用}! [: u2 \$ q) B7 o4 x
\end{center}1 d. V8 G6 T" C: _$ y! T
\vskip.12in
/ u! u+ J( r. N4 I6 _$ L+ t: j% h%-------------------------------------------------------------------------
$ I) {& {0 J; `%\footnotetext{}& {$ B0 j7 m2 s" x1 u& b: I1 k6 l
%\footnotetext{}
& |9 z$ A" Q. ?" | x%\footnotetext{}
8 e9 f5 j$ J% X4 v( l3 ?%\footnotetext{\hfill\thepage\hfill}7 T( r# b% c% U2 z+ j9 ~$ x; O
%\footnotetext{}
# Z6 q( h* o) w7 r! O\footnotetext{收稿日期: 2003-07-08.} \footnotetext{基金项目:! l1 I- t" o4 m
国家自然科学基金资助课题(No. 10271026),
' ?; R: [$ T. J" s1 f3 q福建省自然科学基金资助项目(No. F0310010) ,* v# y% u9 S/ R# A& K. u; y
福建省高校科技资助项目(No. K2001110).}
3 c) ~# ^$ T) \; X. h%数学天元基金(No. TY10126022)及973计划(No. 2002cb312200)资助.}
9 U/ R' f/ h, R\footnotetext{E-mail: linshou@public.ndptt.fj.cn} \footnotetext{*
( A, W0 ]6 {3 n: E8 f作者现在通信地址.}4 I2 W4 I$ R. n3 _% [8 P& v
3 {7 V8 D: t0 y%-------------------------------------------------------------------------
6 A; G8 j% x# E) }%\centerline{\Rightarrowrge\zihao{4}\songti 蔡俊亮}# i8 {" X" @# B4 O) w D( a, ]
%\vskip.1in; T) \9 a& e3 f- k, s
%\centerline{\small\zihao{6} (北京师范大学数学系, 北京, 100875, 中国)}
. H2 [+ T0 }( f ~ |3 h%\vskip .1in
+ h- f( X! _3 ?6 R( b\centerline{\fangsong\large\zihao{4} 杨 \ \ 凤$^{1,2}$,\quad 钮凯$^{2}$ } \vskip.1in
) B5 P: B9 e4 i\centerline{\small\zihao{-5}(1. 漳州师范学院数学系, 漳州, 福建,
. ~' j; Q0 |* [& J1 F6 E363000;\ \ 2. 宁德师范高等专科学校数学系, 宁德, 福建, 352100)}
+ [" ~" m# M8 @+ _* \0 I\vskip.25in {\narrower\fangsong\zihao{-5}\small {\zihao{-5}\heiti: L( S# B0 ^/ L9 N" x1 F8 q
摘要:}\ \* [: e" o* M8 Z7 S T# ]
本文的主要结果是构造两个例子分别说明1序列覆盖的商映射未必是弱开映射,2 z4 F2 {- V8 t9 ?, K
度量空间上的序列覆盖$\pi$映射未 必是1序列覆盖映射.
% @4 C3 c. s6 M0 P9 n$ j/ V7 y3 E( o
{\zihao{-5}\heiti\tenbf 关键词:}\ \ 序列覆盖映射; 1序列覆盖映射;
/ M+ d% J9 s0 E: M1 U4 [) k弱开映射; $\pi$映射; 商映射
0 |; d1 `; G. n/ j* q5 w8 m" N6 _+ k+ w7 {% Y' V; G4 T
{\tenbf\zihao{-5}\heiti MR(2000) 主题分类:}\ \ 54C10; 54D55; 54E40$ ?1 y) v' j( v$ c3 Y6 Q* A
/ {\tenbf\zihao{-5}\heiti 中图分类号:} O189.1
2 q: ~4 m r% m4 f9 _! q. T$ }2 l
: Q" ^0 `% A; A" E4 }; @+ { %%{\zihao{-5}\heiti 文献标识码:}\ \ A\qquad {\heiti\zihao{-5} 文章编号:}\ \) T( p, L8 H& M+ p8 A' b1 U8 y
%% 1000-0917%(2004)02-0229-07
' c% d7 a% L8 g& B; B% ]" q
( A7 a2 k7 i! o* m* a }
/ M9 D+ }8 ?8 N/ M) U. x- T9 C& ~$ f& P- L2 f1 P
\normalsize, d. x9 V9 e' }" L% t' T
* R6 `! m: N5 d0 O\baselineskip 15pt \vskip.15in9 I2 H L* ^' R, h: U* h" g
% b* h* R4 \ X6 [' u
\sec{0 引言}
( T/ |$ Z; }% Z' C- v; C- K- `, Z! E& `4 k7 i
9 l! z' _ d; I1 `; B! I+ [\sec{参考文献} \baselineskip 13pt {\footnotesize
' T8 J+ s' x. S8 w
5 |: U; K' n2 O* s* z. s\REF{[1]} Daves, C, Kahan, W.M., The rotation of eigenvectors by a" a% V' _5 ?& O; B" `, r
perturbation, {\it SIAM J Numer Anal.}, 1970, 1(2): 1-46.
5 n4 {7 i8 c8 P3 X+ ]
! J. ], q( r. g7 ?9 |, `" _7 m }
( s5 Y7 @3 Z" c6 [8 `0 |- B) Z9 o1 [) s! O( m
\vskip .25in
7 N& G' Y- Y$ ^- t( e4 a# N\begin{center}
2 j" q0 H) H* e2 E{\Large\bf Relative Perturbation Bounds for }\\[.1in]( X7 B9 @7 I) V$ p; L, R
%vskip .13in
: V( S$ S" E& e" Q( O0 k# r' t{\Large\bf the Subunitary Polar Factor }\\[.1in] O# n$ p" U' p5 M3 c; |
%\vskip .18in9 O8 a7 y4 L0 z( B# Q
{\Large\bf the Under Unitarily Invariant Norms}\\[.18in], S) o+ ^ i% e5 t9 v! a7 |) N
%\vskip .18in% z' }+ X# H! E. p9 C, P+ J
{\normalsize\zihao{5} YANG Feng$^{1,2}$, \quad NIU Kai$^2$}\\[.1in]
6 ]4 h( a- x0 x* H% D' }6 z+ S%\vskip .08in" f3 |& K+ _1 r9 r) n( S
{\footnotesize\it(Department of Mathematics, South China Normal
0 g7 S1 ^# o8 s+ N& c! G; S) |University, Guangzhou, Guangdong, 510631,9 P. m2 ]' [3 K
P. R. China)}\\[.25in]
- t" F6 g- T, N6 @%\vskip .1in; O# s1 c4 F/ q5 B S4 ]
%{\zihao{5} Liu Yanpei}, r) q" c, c2 [! F {& S
%\vskip .08in
" K- s5 v1 o* h0 @, U9 h%{\footnotesize\it(Department of Mathematics, Northern Jiaotong University,; U1 P: k1 w* M$ e! B9 a7 v
%Beijing, 100044, P.~R.~China)}, n1 M4 Q8 O. n7 U2 ]0 W; K. _
\end{center}
# f W2 |3 I' l%\vskip .18in9 P* i+ J, p. Q3 U) A$ ^! V8 z# _
\baselineskip 14pt
0 B ]$ J+ A( T K; n' D- b; b
8 b+ k* w& `: N0 r8 B# v* s\zihao{5}\normalsize {\indent{\bf Abstract:}\ \
5 H# W( `8 u) W% J: N8 o* }7 G4 K
{\bf Key words:}\ \
, l; I5 W: h6 Z1 e6 r% W g) T# w# @0 | q1 \ y3 M- v9 b4 Y
: H( u: t9 P, i8 \7 i* o
}/ V9 z( z$ U3 P$ C
\end{document}
6 t3 Z3 h4 Y2 x. f& X' b |
zan
|