- 在线时间
- 1630 小时
- 最后登录
- 2024-1-29
- 注册时间
- 2017-5-16
- 听众数
- 82
- 收听数
- 1
- 能力
- 120 分
- 体力
- 557101 点
- 威望
- 12 点
- 阅读权限
- 255
- 积分
- 172503
- 相册
- 1
- 日志
- 0
- 记录
- 0
- 帖子
- 5313
- 主题
- 5273
- 精华
- 18
- 分享
- 0
- 好友
- 163
TA的每日心情 | 开心 2021-8-11 17:59 |
---|
签到天数: 17 天 [LV.4]偶尔看看III 网络挑战赛参赛者 网络挑战赛参赛者 - 自我介绍
- 本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。
 群组: 2018美赛大象算法课程 群组: 2018美赛护航培训课程 群组: 2019年 数学中国站长建 群组: 2019年数据分析师课程 群组: 2018年大象老师国赛优 |
基于视觉的无人机板载自主实时精确着陆系统 ' D3 \2 x% `( \; A1 W0 r \
# k- u1 n! H+ U f+ E
5 M& A& \: k0 w& T! N3 ]' F- R u/ G3 N2 M
基于视觉的无人机自主精确降落研究可以被广泛应用于电力巡检、森林巡检等行业。传统视觉方案无法
! _* x& [$ V8 N应对降落过程中复杂的环境变化,无法实现在机载处理器上的实时图像处理。因此提出一种适用于无人机板载端0 I$ N+ j3 x1 u* ?* E4 h
轻量高效的 Onboard-YOLO 算法,使用可分离卷积代替常规卷积核,有效提升速度。通过注意力机制自动学习通
1 q6 N Q( g% I8 G9 D道特征权重提高模型准确度。在五种干扰环境下进行降落测试,并与行业领先的实时检测算法进行对比实验。实4 h) _$ e) R8 X* T
验结果表明:Onboard-YOLO 可以解决降落过程中的复杂环境问题,在板载端达到 18.3 帧计算速度,相比原始
6 M, y( R7 u) ]8 {YOLO 算法提升了 4.3 倍,相比 Faster-RCNN 提升了 25.7 倍,算法平均准确度达到 0.91,相比 SSD-Mobilenet 提 3 y. Y+ ?& J* B% I
高 8.9%,经过实际测试验证,Onboard-YOLO 可以实现无人机板载端的实时自主精准降落,达到 95%以上的降落/ G* [$ T' W" Z( v7 m; M5 X
成功率。
9 _5 k3 s7 A4 V, ?: m) M2 e8 Q+ f
; V: S/ T, A7 m+ q: I+ w( K
1 f' U: V) u& x: D |
zan
|