QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3893|回复: 6
打印 上一主题 下一主题

实二次域(5/50)例2

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 14:05 |只看该作者 |正序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:59 编辑 ; j9 `! x( e) K5 E/ h  T

    ; z. S$ Z! t# w2 C% B2 w& l% CQ5:=QuadraticField(5) ;
    + k- F# ^8 p: v& QQ5;
    6 M$ l( _' \% OQ<w> :=PolynomialRing(Q5);Q;1 ?9 v  O5 U" o9 Y4 L4 ~

    * T7 }8 g( s- T, A( i3 gEquationOrder(Q5);- @4 R9 C$ Y) D& r, O; G  h% O
    M:=MaximalOrder(Q5) ;
    8 c; A  G) W9 O/ {! V! rM;
    : I3 P9 k7 a; ^, H, n, yNumberField(M);8 x) f8 q* M6 J, h0 q
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;4 Z1 i  c6 @- b' J9 o$ O  K+ N* M
    IsQuadratic(Q5);IsQuadratic(S1);IsQuadratic(S4);IsQuadratic(S25);IsQuadratic(S625888888);
    5 G$ z: i; `8 X/ Z, ?. H/ gFactorization(w^2-3);. {& s9 X( L* C1 b- D" D% k
    Discriminant(Q5) ;
    1 \- C3 T8 @* T2 [. J- ~FundamentalUnit(Q5) ;
    4 A2 a# P6 ~  R9 {FundamentalUnit(M);( E$ }: G" U# z3 C& _# a; W
    Conductor(Q5) ;1 H& S/ a, ]0 h" S: o4 m
    Name(Q5, 1);
    0 z) N2 N( d! m, E# j+ ?) AName(M, 1);
    ( H  M$ @9 S% Q# k) O, q# XConductor(M);. V( E3 \, q' Z# a+ x
    ClassGroup(Q5) ;
    : z4 M6 O& Q% E( r/ `ClassGroup(M);
    - M4 f8 J4 z' h3 v. C) PClassNumber(Q5) ;
    5 j9 A3 [; m  v, W% i$ o0 gClassNumber(M) ;
    - Y4 y  H  m# x! T% D. ]7 e4 q! {0 c/ I; e( z" j
    PicardGroup(M) ;
    ; a! ~+ A/ z* _6 tPicardNumber(M) ;
    - d: l  B  T) u# {: ^# L3 T
    ( u+ Z# J0 g. |3 \* q% R, @. {7 s' X) @: v/ M# k4 H
    QuadraticClassGroupTwoPart(Q5);4 U# e, G9 X: i
    QuadraticClassGroupTwoPart(M);
    ! p6 E- t  }) ^" ]
    * ^' f/ C( ~$ z1 X5 A; ^/ ]& C$ h8 m- r. h1 R- ^
    NormEquation(Q5, 5) ;4 d' I1 r, e! V' \6 ?
    NormEquation(M, 5) ;* B% M* `3 a0 F) G2 w
    ! T5 X" b4 A9 g8 M
    4 V' b- q  e8 {& w
    Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field7 J+ P$ A3 B# Y8 _! K
    Univariate Polynomial Ring in w over Q52 A: `6 |  l* l) `) z
    Equation Order of conductor 2 in Q53 ]7 v7 S+ S" b) s
    Maximal Order of Q58 ?2 \% }  q, `+ N" K- n& O: E; S) Q
    Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field4 C1 X* F& y/ i( ]/ M8 }# ]$ i3 o
    Order of conductor 625888888 in Q5
    ) X- x6 B" v1 ~$ V" Q8 Strue Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field
    " I2 Q* w1 t7 U/ s! j& s" @. _true Maximal Order of Q5
    " B# r9 E& ]& Q# Vtrue Order of conductor 16 in Q5* I- X$ y% B) m3 i$ F* Z
    true Order of conductor 625 in Q5
    9 D" _! k" l  \& Otrue Order of conductor 391736900121876544 in Q5
    / ^' B4 y$ X( E4 U! Z1 D+ {[. R" R7 r3 v' t7 z3 b/ A( e0 q# k
        <w^2 - 3, 1>) E: @2 J1 L( l9 @2 z/ a& z
    ]. h1 e6 F  D* t* {3 Y1 W
    59 m2 g1 j$ [) z6 K4 b: Z/ s
    1/2*(-Q5.1 + 1)" F  s0 w: m9 |) o& {
    -$.2 + 1- W3 P% h2 [/ J8 g: T
    5% p) v7 e. T/ S
    Q5.1
    ! X1 {, g6 f* F9 a, ~8 `$.2( ~! h& M# X) D; M2 G( t1 \# a
    1
    . q3 E  Y4 n/ j1 @0 nAbelian Group of order 1, ?- R$ C) y8 q/ x5 b' T
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    ) l. R9 t3 |* \+ kAbelian Group of order 1. V' G3 H4 d$ e% q
    Mapping from: Abelian Group of order 1 to Set of ideals of M% v/ n% F. C, e7 E( j$ N1 T* S8 v
    1. z% `" Z( T# g, R# Q
    1# q7 m  G. ~* ^4 B
    Abelian Group of order 1
    ' q0 U; _1 F1 G  n0 j7 ?+ ?& yMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no' B" e6 S- s1 x8 w5 f$ h
    inverse], n- z, U; C' F% e4 B5 w1 L
    1
    * e' U- L) O* `3 ]1 H+ P  v( x0 TAbelian Group of order 1- ^' L5 T( {) c9 I. D: f" q% w
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant3 d) J2 K, y8 x' W* d4 a
    5 given by a rule [no inverse]
    ' {; P/ r( x( i+ bAbelian Group of order 1
    " q7 D9 G& \6 LMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant/ h. \( `2 K- Z+ H
    5 given by a rule [no inverse]
    ( [& X' F# G2 O- d6 n& ^# B7 ttrue [ 1/2*(Q5.1 + 5) ]* [( n7 ^% |' f6 W& g+ f
    true [ -2*$.2 + 1 ]
      n; R9 c* H$ z$ O9 f. U' P+ r) z; j% J7 t% v7 N1 W( x. D

    & c4 F5 }: R/ u3 x0 R( W7 ~1 \* Z( o
    3 N0 D' C* L7 z8 d. e1 T

    % L4 c- Q' Z$ ?: q9 r& k0 I
    ( ^% f1 I! m* Z. U. |. u1 {! ]; t6 z* y4 o, ~
    / ~1 q4 J" I2 [- g4 s5 W
    + @3 C: _3 ~, v
    ; M3 K& y% M. u) I# b

    8 ?: Z" S' v8 r' L0 V- ?==============
    ; N9 ?- t! G6 D+ l0 k" I% a, Z( j
    1 R! y3 X! i: S- {5 qQ5:=QuadraticField(50) ;
    ! Y& ^) Q- F/ P% QQ5;+ q6 ~/ o/ r# j* d( }0 X0 v
    6 G0 V4 q$ R2 }( V! z
    Q<w> :=PolynomialRing(Q5);Q;& o& ]6 z7 U7 [7 N( Z' y
    EquationOrder(Q5);
    1 T0 k+ K/ O& l4 c/ w& aM:=MaximalOrder(Q5) ;
    $ A) P+ m9 |$ a4 {; gM;- B: ]3 n/ e5 P) e
    NumberField(M);
    7 ^: M0 N1 O, {0 N0 Q: g+ P8 zS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;0 I) B  d8 H) d) n3 B5 z: a
    IsQuadratic(Q5);5 @) X+ |" G9 q% G! \9 \$ f
    IsQuadratic(S1);) S! @! a' b6 C2 D0 a4 f+ H( n; V
    IsQuadratic(S4);
    . f9 v5 T  f. J1 YIsQuadratic(S25);
    9 H- U3 L* k1 i4 BIsQuadratic(S625888888);
    2 ^6 W; N# b. j/ b* r0 g7 hFactorization(w^2-50);  . _' v& ^/ B0 }% w4 g3 l
    Discriminant(Q5) ;
    ; P5 {8 z, z9 @8 A3 [FundamentalUnit(Q5) ;
    4 y& s+ e! L, h' r$ _FundamentalUnit(M);1 `4 E8 ?- ~; A% ~0 c# H
    Conductor(Q5) ;
    8 O- z5 Q+ ^! J/ h: }* I. V# ^/ B2 a- |* p" a8 u  N  ]
    Name(M, 50);% |! U: d' @, Q' f. e2 v, v% T' H
    Conductor(M);1 k. W! h" a- Q
    ClassGroup(Q5) ; ; a1 r" ?$ n1 {3 V, D
    ClassGroup(M);( f; A5 [6 Z" l3 f6 `, n# u6 g
    ClassNumber(Q5) ;
    4 u; b7 V/ w- M; RClassNumber(M) ;
    5 G$ T2 u* ^5 o3 j. X9 KPicardGroup(M) ;
    4 L8 i8 ]4 J8 Y' `PicardNumber(M) ;% a) L( O2 V! c, y( c5 z. I
    ( _( u9 R! i7 D: c9 g  w4 L# P
    QuadraticClassGroupTwoPart(Q5);( O# \# |! O. {. p$ z" p! c
    QuadraticClassGroupTwoPart(M);
    ) G1 K$ x1 Z! x6 `; ^NormEquation(Q5, 50) ;' m8 g' K$ u2 C& d3 f
    NormEquation(M, 50) ;
    # I" B# M& m+ e8 }" e
    . v  d* s5 j  _. j) c- q+ H0 O$ QQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    % K" z8 H$ A' oUnivariate Polynomial Ring in w over Q53 N& S$ ]2 K7 }
    Equation Order of conductor 1 in Q51 H* H2 n" X; E
    Maximal Equation Order of Q55 c+ C! Z% H0 d5 X
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
      I3 v/ ^3 F8 O1 NOrder of conductor 625888888 in Q59 S; e4 [9 X/ M+ v3 S7 k: u
    true Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    2 M% K+ o5 F. |true Maximal Equation Order of Q5
    . |- e/ P0 Y0 G- Q: `true Order of conductor 1 in Q53 K; v- ~/ G$ q, j
    true Order of conductor 1 in Q54 V2 L# z8 M' h. z
    true Order of conductor 1 in Q5
    + m. r* Z, @. C3 T6 `0 f3 Y[- N7 b* p9 O( B6 n8 A' I
        <w - 5*Q5.1, 1>,- _9 A( y) _5 a/ z
        <w + 5*Q5.1, 1>
    " o! x. q; \) ^9 |% L1 i]6 n8 N% e3 g- l
    8) Y! z+ W) }7 Z4 R: @
    Q5.1 + 1
    * W  J8 s+ I; @1 |& R/ H1 n$.2 + 1# E7 _9 E# v+ x3 U
    8
    2 J3 F! U" e  Y) m1 c4 b+ O7 R& f6 K  H$ q, M
    >> Name(M, 50);4 ~0 ?9 q( Q0 a( z% Q# h0 g, J' C
           ^3 Y9 D& d, G' r* L+ f# e  d/ t+ d
    Runtime error in 'Name': Argument 2 (50) should be in the range [1 .. 1]8 ~0 s4 J; ]' ~% G- r% \
    % X5 m( ?* A9 G, I# m& h
    1
    3 b1 A& p# t  q8 s6 QAbelian Group of order 1
    " y0 c  H; Q/ s7 EMapping from: Abelian Group of order 1 to Set of ideals of M: m7 _5 J7 m2 l9 F: A: {" t
    Abelian Group of order 16 ~, T! V) ^7 e# E, O
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    ' Z/ `  V8 q: b$ t+ G) |4 t" u1" |" a. m. O9 O5 m* c+ a
    1
    9 o' G# h- Q1 x( c6 yAbelian Group of order 1
    . j6 i" F3 }/ E# O+ }Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    1 ^2 H& Y" c7 u7 l+ k) hinverse]
    . d/ k# }- m: c' @" q- r1* Z1 m( R7 {" r7 W: K, _
    Abelian Group of order 1
    # e6 O$ H. r" s5 b  zMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant! S7 B: I- p0 H9 ]  Q% [0 ~  M
    8 given by a rule [no inverse]
    0 z, J( X3 M2 u8 ~% eAbelian Group of order 1
    6 A  V4 p9 ~. ]  _Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant- ~- x$ L- Y- g3 M6 M+ s
    8 given by a rule [no inverse]
    % k: F* X' S7 ttrue [ 5*Q5.1 + 10 ]
    & h+ t3 {+ J# c5 l, B1 ztrue [ -5*$.2 ]
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    lilianjie 发表于 2012-1-9 20:44 0 s$ U1 O9 l+ I! v

    # J  {& a, T( ]分圆多项式总是原多项式因子:
      J1 j0 \% _" r( `0 R" eC:=CyclotomicField(5);C;
    ; |! [& f" O7 \+ P& gCyclotomicPolynomial(5);
    9 u3 g, t+ E3 M! A! }* t

    * P0 A* F: ~3 v& m/ q) i3 y  d分圆域:
    ( s$ b" R+ L% O' ~% ?6 h分圆域:123
    4 G$ J, u2 `" M7 N# P9 B4 O" T' f% k0 o% I3 e
    R.<x> = Q[]0 v! q: ?  X1 Y5 j. ]" C
    F8 = factor(x^8 - 1)
    5 ^7 @( n( `6 H5 f' MF8" J& [8 ^  z' T* y
    8 I2 t) _' Z4 Z/ \. I/ h
    (x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1) 3 s- L3 @9 ^3 i3 \* h; @" p& r# A
    * v/ B: U5 k' n; R
    Q<x> := QuadraticField(8);Q;
      F, y( o' G6 l1 w" v8 A7 EC:=CyclotomicField(8);C;, Z4 X) b* F" w8 i8 z. t
    FF:=CyclotomicPolynomial(8);FF;
    % |; Z( F* u0 E  M
    ) P+ T2 z3 s6 wF := QuadraticField(8);
    - N$ k  X3 b6 e$ ^% b- o/ Y: n9 ZF;; A0 [, ]" t6 H% r1 a3 P  }) f
    D:=Factorization(FF) ;D;
    5 `% h6 z% B# l0 O9 c+ L8 [$ fQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field- R) C7 k4 N' I$ b: T" D
    Cyclotomic Field of order 8 and degree 4; U9 e& u( C3 A% _( O
    $.1^4 + 1! m4 `: d7 ?1 P  m
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field, l+ r. o7 K. S' ^9 R5 l1 h
    [
    7 q8 S$ C# M1 m! q    <$.1^4 + 1, 1>
    4 d8 F2 L. e, ^1 c! ^8 a' u]
    $ p3 w7 A4 S- G, P6 F1 E+ X
    9 E' R6 B4 l3 R; ]& R; F* e8 fR.<x> = QQ[]* y! H0 l: {3 N6 t: V5 |& J2 h
    F6 = factor(x^6 - 1)4 ?- P1 X" X" R6 s# @7 ]" `
    F6
    2 p. @  I) A2 D. l. e4 D
    ' C$ q& ]& W" \(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)
    & v% I( E) _- `" M3 m2 h: `9 \
    4 E* N4 H3 I, s* \% Y: z$ tQ<x> := QuadraticField(6);Q;2 h# U% o) \1 Y9 d1 j" n! G
    C:=CyclotomicField(6);C;
    % z0 G2 i% N9 C( f2 Y. [% aFF:=CyclotomicPolynomial(6);FF;; z0 H) ], S* E, z* }

    , r2 C( E( y6 K) zF := QuadraticField(6);; ~$ v3 V( h2 w# {$ b
    F;
    3 I2 A$ G2 u: Y3 O. @2 ~D:=Factorization(FF) ;D;
    8 o5 c; A' u% u4 a' |9 fQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field5 C' R) x. C5 q8 t9 B: ]8 Z
    Cyclotomic Field of order 6 and degree 2
    % V; I. Q: }3 X3 w! r$ Z$.1^2 - $.1 + 1
    3 d4 @8 a- _; Q3 T' G/ b% P2 fQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field0 ?( Y" k% v: i) }5 \
    [5 G6 ^7 M7 w$ k; F
        <$.1^2 - $.1 + 1, 1>2 u1 s! X, K  {0 o. h
    ]5 o! T2 y/ H! Z- l; }. w

    + _" v4 l6 A) x: QR.<x> = QQ[]7 ~  M/ H. ?: l3 K: I1 G
    F5 = factor(x^10 - 1)
    # @7 f5 G2 ]4 P- N) t: b4 ]* eF5
    7 p: D% j$ g! g2 F0 j(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
    4 u. J; N9 ?  y) g: J1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)
    ; ~) c, M$ H4 N; S
    * [7 K/ }. B" j: ^Q<x> := QuadraticField(10);Q;
    9 f2 `6 R! B9 ?- c( d5 r% I( YC:=CyclotomicField(10);C;
    8 v. o1 M& F% a5 e2 O! Z: k! ~FF:=CyclotomicPolynomial(10);FF;* M, g- Q+ H" l

    5 [8 F) m$ E1 h7 d* G" e8 ~F := QuadraticField(10);
    % ^1 {) k% J0 q. L3 S! cF;" D* \; P/ c7 }& N! e- ?
    D:=Factorization(FF) ;D;
    7 i- {8 N8 M. d& t: IQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field2 E, D0 Z- u4 f3 A
    Cyclotomic Field of order 10 and degree 41 N7 D2 O# w( ^+ t" Q
    $.1^4 - $.1^3 + $.1^2 - $.1 + 17 b3 W( ^4 R8 X; Z0 j% y
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    . `5 P+ h4 X- z6 m% c[4 d. A/ @! ]3 Z! d  H
        <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>
    * A2 Q7 C* ?, \; _6 I. q]
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3289

    积分

    升级  42.97%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    本帖最后由 lilianjie1 于 2012-1-4 19:16 编辑
    ( p6 |, z5 Q4 G3 F2 @; l! n9 _
    , }, d, W% P3 F0 u3 |" |; l判别式计算Discriminant' u( t9 |' @# E. U4 ^

    ! v1 `/ M& }2 N) F5MOD 4=1
    ! p( r- ^; i4 R% d, Z! d- B4 g$ ~! h" C' P& N: K& V
    (1+1)/2=1          (1-1)/2=0
      X$ z5 J2 S: M/ S) K
    6 o' |% [% u' z' K6 zD=5
    * ^' A/ U6 O, ~9 v* D& X( ]2 o
    ; D3 _7 E" ^6 D
    & h* N7 F* I) N. p% ?9 u50MOD 4=2: v1 d- ~. _3 p  h
    D=2*4=8

    33.JPG (165.31 KB, 下载次数: 260)

    33.JPG

    22.JPG (137.12 KB, 下载次数: 250)

    22.JPG

    11.JPG (163.36 KB, 下载次数: 288)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    lilianjie 发表于 2012-1-4 18:31 6 n7 a( y! B1 @* `4 |" t8 j; U$ ?" o6 f  V
    基本单位fundamentalunit :. U: o/ X0 i5 z. M1 y
    5 mod4 =1                              50 mod 4=2

    " j& }' U1 f2 ^" C% j/ K基本单位fundamentalunit

    3.JPG (105.07 KB, 下载次数: 261)

    3.JPG

    2.JPG (140.29 KB, 下载次数: 267)

    2.JPG

    1.JPG (193.2 KB, 下载次数: 266)

    1.JPG

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 12:42 编辑
    ) i* a, e* B& ^" g: ^6 J! b, K9 }7 a4 n1 l8 O
    基本单位计算fundamentalunit :& ~9 g) B  l7 X
    5 mod4 =1                                              50 mod 4=21 A- k. P' g/ V" s

    # d* `5 k% p; `0 c/ m x^2 - 5y^2 = -1.                                 x^2 - 50y^2 = 1.9 W! A/ {( |! c$ `
    x^2 - 5y^2 = 1.                                  x^2 - 50y^2 = -1.- R: |9 D: h9 u7 {0 W3 e, w' d
    . F7 n* K9 w8 z* `1 S8 D' Z
    " l8 ~* y9 N8 X6 X  Q) l( T  F
    最小整解(±2,±1)                              最小整解(±7,±1)
    0 R# u% w  ?- {6 Y8 j7 A' Q                                                             ±7 MOD2=1
    6 v8 T% d% G  x5 j2 O# K
    ; N+ o# Z3 a. B两个基本单位:

    11.JPG (3.19 KB, 下载次数: 264)

    11.JPG

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    二次域上的分歧理论

    1.JPG (177.16 KB, 下载次数: 284)

    1.JPG

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-22 05:07 , Processed in 0.640193 second(s), 87 queries .

    回顶部