QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 5437|回复: 11
打印 上一主题 下一主题

奇数A的分解通式

[复制链接]
字体大小: 正常 放大

12

主题

5

听众

703

积分

升级  25.75%

  • TA的每日心情
    开心
    2016-6-7 21:23
  • 签到天数: 196 天

    [LV.7]常住居民III

    跳转到指定楼层
    1#
    发表于 2012-4-19 01:22 |只看该作者 |正序浏览
    |招呼Ta 关注Ta
    奇数A的分解通式
    : z0 g, l7 H- r2 y* r海南省乐东县保显学校 陈泽辉
    . a, P# t9 B, B4 K ! }5 b! S9 u. X7 D/ R
    在正整数范围, P、T为两个相邻自然数,若有奇数A满足:P2<A<T2且T2-A=D,存在且必存在m=(n2_D)/2(T-n),那么A=(T+2m+n)×(T-n)。(T+2m+n与T-n分别为数A的大小两个因数)如112<133<122、122-133=11(这里T=12 、D=11),代入关系式m=(n2_D)/2(T-n),即有m=(n2_11)/2(12-n),,通过实验法(代入法),在正整数范围内很快地得出n与 m的两组解:分别为最小值(5,1)与最大值(11,55),此时数A=133=(12+2×1+5)×(12-5)=19×7。
    # l! l3 Y) m$ M+ K. Z1 ~特别说明:
    2 x$ m3 u) ^  L$ {1、若n与 m有最小值与最大值两组解,则数A为合数;若n与 m有且仅有一组解,并且此时n+1=T,则数A为奇素数。
    , S9 g3 {$ @4 S; ~; r2、若D为一个完全平方数,此时n最小值为√D,m最小值为0。如A=91,92<91<102,则D=9是一个完全平方数, m=(n2_D)/2(T-n),n与 m的最小值为(3,0),因此A=91=(10+2×0+3)×(10-3)=13×7。也就是说,当D是一个完全平方数时,我们能够比较快捷地去分解出一些足够大的特殊合数的因数。这里所指特殊合数A,是指在P2<A<T2区间里, T2-A=D是完全平方数(且D<T)的特殊奇数。如在882<A<892区间里,小于89的完全平方数有:1、4、9、16、25、36、49、64、81,因为89的平方数为奇数值,所以在T2-A=D中,D不为奇数值,在这个区间内满足数A为特殊奇合数的D值只有4、16、36、64四组,也就是说在882<A<892区间里,特殊的奇数A有四个:892-4、892-16、892-36、892-64。这时我们能够比较快捷的分解出这四个特殊奇合数的其中的一个因数:892-4=7917其一因数为89-2=87、892-16=7905其一因数为89-4=85、892-36=7885其一因数为89-6=83、892-64=7857其一因数为89-8=81。依此类推,在P2<A<T2区间里,若T的值越大,数A的特殊情况就越多,因此完全可以说明数A若是越大,简单地分解它的可能性同样存在。当D不是完全平方数时,数A的分解稍为复杂,在此笔者就不例举说明。
    1 G/ t1 h! m$ F- h3、当D为偶数时,则n为偶数;当D为奇数时,则n为奇数。) I, L  j5 g( N: L" Q, e+ `* D. f
    4、有T+ m为数A的两个质因数的中位数,且(n+m)2+A=(T+ m)2。
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信

    12

    主题

    5

    听众

    703

    积分

    升级  25.75%

  • TA的每日心情
    开心
    2016-6-7 21:23
  • 签到天数: 196 天

    [LV.7]常住居民III

    所有C型待分解数A满足:较大因子的系数与1的和的平方数减去极数的差除以较大因子所得的商——再减去——极数减去较小因子的系数与1的和的平方数的差除以较小因子所得的差——永远等于1。即:[(y+1)^2-U]÷Q-[U-(x +1) ^2]÷p=1如:C型待分解数A=319=11×29(可得x=5、y=14、U=80)所以有[(14+1)^2-80]÷(2×14+1)-[80-(5 +1) ^2]÷(2×5+1)=1
    回复

    使用道具 举报

    69

    主题

    11

    听众

    1103

    积分

    升级  10.3%

  • TA的每日心情
    奋斗
    2015-5-8 18:47
  • 签到天数: 193 天

    [LV.7]常住居民III

    自我介绍
    一个喜欢数学建模,却还处于懵懂状态的人

    社区QQ达人

    回复

    使用道具 举报

    12

    主题

    5

    听众

    703

    积分

    升级  25.75%

  • TA的每日心情
    开心
    2016-6-7 21:23
  • 签到天数: 196 天

    [LV.7]常住居民III

    本帖最后由 素数516466 于 2014-3-19 21:10 编辑 # @% O/ H! g6 t$ ^. j% |5 R
    9 U& _. D$ U+ b( Y; N# m
    关于C型合数的分解" G$ F% j2 ^6 ^. g  L! C% I
    首先来理清一些名词:
    9 M, ]8 A7 P- p1、合数A可表为:A=2N+1=P×Q=(2x+1)(2y+1),在这里P与Q是待分解数A的两个因子;N称为数A的判别数;x、 y称为P与Q因子的系数简称系数。% I& ^! B# b, o$ {7 Q
    2、若有合数A与1的和能被4整除,则称数A为C型合数。如55:(55+1)÷4=14(整除)则称55为C型合数。
    9 Q: h2 y: w0 m6 Y& {3、把C型合数A加上1的和除以4所得到的商称为A的极数,用字母U表示。即U=(A+1)÷4。
    6 ^/ J( w0 @) T% z% W笔者发现所有的C型待分解数A的判别数N、极数U、系数x和y存在如下关系:' }% X: N  H+ O6 w" c3 J: }! \" B
    ①2xy+x+y=N
    # }" x0 f+ M) g& v4 r. F8 j8 v4 e②2xy(N-2xy)+(N-2xy)^2+A-2xy-2U(N-2xy+1)=0! k: y* d' q2 s' B2 p% o
    比如A=119为C型合数,得N=59;U=(119+1)÷4=30;这时119= (2x+1)(2y+1)存在如下分解关系:
    & M5 K2 f8 `* M  W$ @0 \①2xy+x+y=59
    ' l8 |6 U; r+ U3 X- h! q# _1 k②2xy(59-2xy)+(59-2xy)^2+119-2xy-2×30(59-2xy+1)=0
    : y3 n6 E# L/ ^; J笔者试问这样的方程有方法解之【119= (2x+1)(2y+1)、(x=3,y=8)】吗?如果有,那么C型合数的分解就不在是不可能的问题了。特别要提的是笔者转化上面方程得到一个新的关系式:     
    7 n+ T/ n2 v- Z4 O3 h; i
    xy =(2NU+2U-N^2-A)÷(4u-2N-2)
    笔者发现把任何一个C型合数的判别数N、极数U代入其中,其解总为“xy= 0”。其原因何在?请示之。; e. K" z2 w" k; I, c! V
         笔者还发现此类C型数的分解之法,还可转化为与分子数n有关联的关系式,它是一个一元四次方程,笔者以为算法比较复杂,暂不表。# [8 T. b* t2 Z. ?1 U# ~' J

    , a- _' X/ b4 u) P% L1 w
    回复

    使用道具 举报

    12

    主题

    5

    听众

    703

    积分

    升级  25.75%

  • TA的每日心情
    开心
    2016-6-7 21:23
  • 签到天数: 196 天

    [LV.7]常住居民III

    记得有一位数学大师说过,如果在没有计算工具的条件下,分解一个十六至二十位的合数,一个人用其一生的时间来分解也许做不到。而笔者以上所介绍分解之法的最大优点在于:有合数A=PQ(P﹤Q)该法不以因子P的增大而给分解数A带来困难,倒是以P与Q两个因子的差值的增大而给分解数A带来一定的困难。因此这种方法在某种程度上还是有实际意义的。
    回复

    使用道具 举报

    3

    主题

    10

    听众

    390

    积分

    升级  30%

  • TA的每日心情
    开心
    2015-3-16 10:49
  • 签到天数: 117 天

    [LV.6]常住居民II

    自我介绍
    wu
    回复

    使用道具 举报

    12

    主题

    5

    听众

    703

    积分

    升级  25.75%

  • TA的每日心情
    开心
    2016-6-7 21:23
  • 签到天数: 196 天

    [LV.7]常住居民III

    【得到B2型字符链(y)通式(3/2)×x(x+1),该字符链上所表示完全平方数的根数是:6x+3(完全平方数可表示为24y+9)。如在该链上有链数x=1时,那么就有字符数y=3对应的完全平方数是3×24+9=81,根数是:6×1+3=9……】
    回复

    使用道具 举报

    12

    主题

    5

    听众

    703

    积分

    升级  25.75%

  • TA的每日心情
    开心
    2016-6-7 21:23
  • 签到天数: 196 天

    [LV.7]常住居民III

    回复

    使用道具 举报

    12

    主题

    5

    听众

    703

    积分

    升级  25.75%

  • TA的每日心情
    开心
    2016-6-7 21:23
  • 签到天数: 196 天

    [LV.7]常住居民III

    ②不是完全平方数的B2型数存在以下特征:我把B2型数与1的差除以4的商称为B2型数的极数,比如说125的极数是31;161的极数是40……极数用字母U1表示。B2型数的极数减去2的差与一个自然数的平方的和是6的倍数,用式子表示为(U1-2)+ Z^2 =6y(y为字符数)。如125:[(125-1)÷4-2]+5^2=6×9;161:[(161-1)÷4-2]+4^2=6×9……
    回复

    使用道具 举报

    12

    主题

    5

    听众

    703

    积分

    升级  25.75%

  • TA的每日心情
    开心
    2016-6-7 21:23
  • 签到天数: 196 天

    [LV.7]常住居民III

    稍有更新:' ?" S' R% j5 u7 o& ]% [2 S

    1 E5 f0 l) B6 g+ H; R6 e首先,我把所有的奇合数A分为两大部分:1、若数A与1的差能被4整除,把这一类奇合数称为B型合数。如85:(85-1)÷4=26则称数85为B型合数。2、若数A与1的差能被2整除,把这一类奇合数称为C型合数。如95:(95-1)÷2=47则称数95为C型合数。
    ; z" b8 s. T4 ?- J# lB型奇合数与C型奇合数的分解之法有根本上的区别,所以笔者暂只是先介绍B型奇合数的分解方法。
    ) E" o5 _! Z5 d) d/ lB型奇合数有一个共同的特性:凡属B型的奇合数A,其与1的差除以4的商加上一个正整数平方的和必等于两个相邻自然数的积。如数85:(85-1)÷4+3^2=5×6;如数133:(133-1)÷4+3^2=6×7……
    1 j. C0 k9 I+ h7 c* }而B型奇合数又分为两大属性的数型:
    - P8 e$ o: a* r1 s! q! Q+ p* \0 p我把B1型数与1的差除以4的商称为极数,比如说85的极数是21;121的极数是30;133的极数是33;165的极数是41……B1型极数用字母U表示。那么①不是完全平方数的B1型数存在以下特征:B1型数的极数与一个自然数的平方的和是6的倍数,用式子表示为U+ Z^2 =6y(y为字符数)。如121:(121-1)÷4+0^2=6×5;133:(133-1)÷4+3^2=6×7;165165-1)÷4+5^2=6×11……所以说121、133、165……都是B1型合数。②不是完全平方数的B2型数存在以下特征:我把B2型数与1的差除以2的商称为B2型数的极数,比如说125的极数是62;161的极数是80……极数用字母U1表示。B2型数的极数减去2的差与一个自然数的平方的和是6的倍数,用式子表示为(U1-2)+ Z^2 =6y(y为字符数)。如125:[(125-1)÷4-2]+5^2=6×9;161:[(161-1)÷4-2]+4^2=6×9……
    1 `7 ]3 {7 w8 S3 c7 I也就是说,把奇合数分为两大类型,每个类型里又分为两个小板块。同样很简单,B1型与B2型合数的分解过程又有着本质的不同。
    " E6 q8 z; }0 @$ K. t
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-11-7 15:52 , Processed in 0.829699 second(s), 97 queries .

    回顶部