- 在线时间
- 367 小时
- 最后登录
- 2015-10-7
- 注册时间
- 2012-4-4
- 听众数
- 29
- 收听数
- 0
- 能力
- 0 分
- 体力
- 2850 点
- 威望
- 0 点
- 阅读权限
- 60
- 积分
- 1102
- 相册
- 1
- 日志
- 1
- 记录
- 1
- 帖子
- 515
- 主题
- 26
- 精华
- 0
- 分享
- 0
- 好友
- 96
TA的每日心情 | 衰 2014-6-9 20:45 |
|---|
签到天数: 290 天 [LV.8]以坛为家I
 群组: Matlab讨论组 群组: 2013年数学建模国赛备 |
\documentclass[twoside,a4paper,CCT]{cctart} % 这是Li Dongfeng改的文件头
; Q- n( p) Q- N9 i) C\usepackage{amsmath,amsthm,vatola,makeidx,amssymb,amscd,headrule} % 这是Li Dongfeng改的文件头; J5 E2 e% O7 e! G# ?& J$ K6 Y
\usepackage{amsfonts} % 这是Li Dongfeng改的文件头6 L4 n. c) F; r9 E- ^5 H
%\documentstyle[twoside,headrule,vatola]{carticle} %这是原来的文件头 b, [& u& @- l1 e. O m
%\input amssym.def$ u! ]4 ^. t( M( s
\usepackage{graphicx} %这是原来的文件头7 c, `+ N7 j* }2 d! y: {0 @& T
\input scrload.tex %调用花体字: {\scr A,B,C,...}0 T1 V$ T& X. [: B4 z$ a3 ^
%--------------------------Page Format--------------------------
7 {* N. K* Y& j4 p1 a7 W+ {$ D\headsep 0.2 true cm \topmargin 0pt \oddsidemargin 0pt \footskip
8 f7 k2 i. r$ {4 U3 _, L% u2 t5 v( B2mm \evensidemargin 0pt \textheight 21 true cm \textwidth 14.7: `% t9 v! K8 e( z: l9 s
true cm \setcounter{page}{502}
, v! X3 U- G* A' F# h%\parskip 0.2cm8 E. W. x0 P; g2 R# l
\parindent 2\ccwd
# T* g: l+ j6 ~7 f7 ?0 V\nofiles
- _) D$ c# F8 F" M, v2 j%---------------------------------------------------------------, @: Q' U4 s9 K# B( g3 \( a4 o
\def\sec#1{/ v/ T0 {% R0 ?) z- ?9 Q7 V3 I
\vskip.12in \noindent{\Large\bf\zihao{-4}\heiti #1} \vskip.1in}3 V+ O5 S1 X: f/ R7 a8 a; S/ z. t
\def\subsec#1{2 B. M7 t! y4 f. X; z8 V
\vskip.1in \flushpar{\zihao{5}\heiti #1} \vskip.1in}
& b( v! t7 {4 s0 @\def\de#1{{\heiti\bf #1}\quad}
- _0 H3 l! _ @+ I# ^+ E7 `3 w( \- c1 P* c2 y) b
\begin{document}
: d) a8 I, L: o: `\TagsOnRight \abovedisplayskip=10.0pt plus 2.0pt minus 2.0pt$ R. z. G. n( u. l
\belowdisplayskip=10.0pt plus 2.0pt minus 2.0pt: }+ N8 n3 X9 J/ g: u
%====================================================================
/ m( O7 w5 j- _7 I\catcode`@=11 \long\def\@makefntext#1{\parindent 1em\noindent5 Y( d& N9 n' r+ [, ?. W/ j
\hbox to 0pt{\hss$^{}$}#1} \catcode`\@=12
, o; P/ i1 q# s: q% u$ \% G%====================================================================+ v9 j: X# V6 x2 I
& ~7 I$ A/ m# x. w
\renewcommand{\baselinestretch}{1.0}
' \' s1 g$ m4 L' Z1 S; O0 e) o. m, a" J. Y' A; @$ d! C
) L& Y# \7 R t* U8 _- ^
\newfont{\htxt}{eufm10 scaled \magstep0}5 C9 o) x9 X" ^
%\newfam\euffam. W, @3 A- ]+ U+ V5 O) k9 Z. H1 A
\font\tenthxt=eufm10 scaled \magstep0 \font\tenBbb=msbm10 scaled3 s4 w' e$ m9 H. E6 A* C
\magstep0 \font\tencyr=wncyr10 scaled \magstep0 \font\tenrm=cmr10
1 J x$ Z- ]8 s1 Z6 dscaled \magstep0 \font\tenbf=cmb10 scaled \magstep0/ W' o2 l, n$ K! v- f0 @( @6 J
5 l; \1 P+ f% ^) @0 R
3 S0 {$ K) s! @! `; S\def\cyr{\tencyr}* i$ D$ L. S6 s/ E, B- f- O+ b: o( b
%\def\cyw{\eightcyr}
& I6 B- d, T. M) `4 j# _%\def\Bbb{\tenBbb}/ @+ n5 R7 N; w/ }9 Q
%\def\bbb{\eightcyr}
/ `, V5 n: H6 f8 V) F3 ~( j%\def\txt{\tenthxt}& Z0 y8 P1 f3 a; N3 h2 l
4 ]8 _' V1 v, J7 b3 A8 P\def\ST{\songti\rm\relax}8 G6 ~* d2 t7 S& Q6 d$ v4 k
\def\HT{\heiti\bf\relax}0 ^! S! s; U) N/ ~9 f
\def\FS{\fangsong\relax}7 G o3 h3 x) `' l+ X; }! H2 E) n
\def\KS{\kaishu\relax}: @2 M$ U( ]) h$ t4 x3 {) j
\def\text#1{\hbox{\,#1\,}}
. [( f( C, B% K5 S4 h) Q1 K$ ]\def\pmb#1{\mbox{\boldmath $#1$}}
! m$ m# w( J* {3 j6 m0 `- }. M& ]\def\Cal#1{{\cal #1}}
/ ~; v+ j/ u% Z8 x
9 A. S$ q1 Q* r3 y& |) a\def\CA{\Cal A}
5 k' g8 M4 J: h4 a, i) w5 w: G\def\CB{\Cal B}
) ]" |, O1 p. o1 p) U5 G! [\def\cC{\Cal C}" |, O P3 q, ~, O0 K
\def\CD{\Cal D}1 p/ p( o$ U9 `3 x7 y
\def\CE{\Cal E}
$ K+ Z; t. \* K- B- D\def\CF{\Cal F}) {5 f% W- B. T# v( d8 I9 n
\def\CG{\Cal G}
0 R8 `. p$ }4 z: n, t\def\CH{\Cal H}" K. H$ g6 E4 @8 G8 r$ e8 i; x& i
\def\CI{\Cal I}
7 r- H* x" u. h+ H4 W9 z\def\CJ{\Cal J}7 [6 [% [* K# E! N0 ^
\def\CK{\Cal K}
2 L2 H, K7 b/ _, b& e, b; S" o: p\def\CL{\Cal L}, b2 E9 _' j9 Z
\def\CM{\Cal M}# n: S$ N E1 G% C$ b2 L$ B% M- j
\def\CN{\Cal N}( y# w" j$ M+ l! h
\def\CO{\Cal O}) W( _+ P0 V+ r: y
\def\CP{\Cal P}9 s8 \; H0 r2 Y# r9 w
\def\CQ{\Cal Q}) G/ F7 N- _! ^+ x. e( \
\def\CR{\Cal R}
! p: t; k: j- x7 K/ A8 U\def\CS{\Cal S}
7 p3 S1 c$ M2 a7 N9 m+ ^ A! X\def\CT{\Cal T}
+ b: k9 y, `+ m3 i) B\def\CU{\Cal U}
; q8 N4 n b- a' V2 m' Q5 h\def\CV{\Cal V}, I$ C* i# B# J) q1 L) C
\def\CW{\Cal W}
; R0 K4 |: n+ m& U7 W% b# v* n; \\def\CX{\Cal X}
" E2 l1 Q; [: t$ x& k\def\CY{\Cal Y}& N7 k5 j; U8 e, J6 b0 r
\def\CZ{\Cal Z}
( c) a3 [/ h# k' U0 \\def\BA {\hbox{\Bbb A}}
3 O$ Z7 ? V0 w6 u7 Q\def\BB {\hbox{\Bbb B}}4 v4 g) w) I& j+ i' `; `
\def\BC {\hbox{\Bbb C}}' v8 @5 ~1 X& q/ Y! v, Q9 U
\def\BD {\hbox{\Bbb D}}
, A6 u/ E( u' t, { f& b' i\def\BE {\hbox{\Bbb E}}
+ n- ~) q7 ~& j. |3 ~( O- R! r\def\BF {\hbox{\Bbb F}}5 ~9 p Q1 B$ I" i! y
\def\BG {\hbox{\Bbb G}}
/ ^9 M9 C9 f$ I) M. ^\def\BI {\hbox{\Bbb I}}
- y6 `5 I* N6 T; M( G) S; @\def\BJ {\hbox{\Bbb J}}
) E, Q2 G7 z, p2 E' ^; }+ m7 \\def\BK {\hbox{\Bbb K}}
4 ]1 I" \& m- n) A\def\BL {\hbox{\Bbb L}}
8 n7 T+ L O C$ [% @( ^\def\BM {\hbox{\Bbb M}}: H% v) n! d6 e. v
\def\BN {\hbox{\Bbb N}}$ v# R+ @5 S6 R2 U
\def\BO {\hbox{\Bbb O}}, X. M! v, b9 I# b& e
\def\BP {\hbox{\Bbb P}}5 }" e8 j# z" n: V8 Y
\def\BQ {\hbox{\Bbb Q}}6 t; X$ V0 F( Y& v. {8 `
\def\BR {\hbox{\Bbb R}}
9 N6 d5 }* X6 O9 @1 Y$ n9 r\def\BS {\hbox{\Bbb S}}
6 s9 B, D' O+ \% m/ r4 Z8 E& \4 t\def\BT {\hbox{\Bbb T}}# |! A/ b' D5 [" b% H: {
\def\BU {\hbox{\Bbb U}}$ d: A0 w/ b% j" i. J/ M
\def\BV {\hbox{\Bbb V}}0 B/ [ P$ g9 g$ x: P' _. I" C
\def\BW {\hbox{\Bbb W}}
0 I" k \# F) N1 J( j\def\BX {\hbox{\Bbb X}}2 l. s2 z9 R" F0 I) L% C
\def\BY {\hbox{\Bbb Y}}! |3 E: `$ Z( e7 P% n
\def\BZ {\hbox{\Bbb Z}}/ r" L6 L0 `1 |9 L6 n2 m/ E/ n
\def\Gh{\hbox{\htxt\char'150}}
! C- v$ b2 Q& |. v. |, n\def\GG{\hbox{\htxt\char'107}}* |( Y) \# B c7 D1 ^4 O1 C
1 @8 Z/ W7 E8 e" ^6 F\def\text#1{\hbox{\,#1\,}}' Q) N' l9 |, {! }+ j
\def\pmb#1{\mbox{\boldmath $#1$}}
2 U8 t, W! u4 F\def\Cal#1{{\cal #1}}5 J1 {3 d9 G: Z$ s( t6 a
4 V0 M) g3 B: i4 ]: p3 N# @( @+ j\newcommand{\orp}{\overline{\BR}_+}8 D L; S- s% z; B2 j) j
\newcommand{\opm}{{\rm op}^{\frac{1}{2}-\delta}_M} r9 J r) f! H3 r- w
\newcommand{\wot}{\widehat{\otimes}_\pi}. i q$ k# e5 n6 }5 U
+ f. r( Y- }& v1 P( w/ U& _$ p0 b
%-----------------------作者定义: i: r6 @! f- v% }4 l2 @) v$ m
l$ l- X0 l/ U% W( _2 q1 m) J7 X* N
" {6 r* v0 G3 j3 Z: e%-----------------------作者定义结束
1 ~- I" q+ O0 a+ u2 Q& Q\def\binom#1#2{{#1\choose#2}}. }* g9 o; J) {4 Q( y* s4 F7 r
\def\qed{\hfill\raisebox{0.1truecm}{\framebox[0.2truecm]{\ } } }6 j5 X- }5 C( B. i) m: ?$ M$ T
\def\su{\mathop{\sum}\limits}
2 u3 f* i* I0 I/ s) @+ i\def\Cal#1{ {\cal #1 \rm} }
, x6 Y A4 V2 z4 R3 K% _%---------------------------------------------------------------
: n# t: Q5 V* I: r1 r1 S6 Y/ x\def\evenhead{{\protect\small{\zihao{-5}\songti \hfill \qquad\qquad3 N9 B' B, F/ p. K- ~
\qquad} \hfill {\zihao{-5}\songti }}}
2 W6 s3 m4 |2 W/ t4 u\def\oddhead{{\protect\small {\zihao{-5}\songti }
2 h* G$ I% ^ p5 d B6 f1 i\hfill {\small\zihao{-5}\songti 方奇志: Total Dominating Set Games# O9 _! m1 P ~3 ^( L4 l
}\hfill}}
- |: W1 ~# \$ y) w! S%---------------------------------------------------------------; s0 } F: N5 C) t5 c9 x1 G0 [; Y
; y: d" {( `. w3 n0 d4 T) j\vspace*{-13mm}1 ] t! |9 V/ l5 N3 S
/ ]3 l1 f/ ~4 @8 x e\thispagestyle{empty}
& E o( x; a* g$ N3 e
7 @9 y. E6 u, O7 A
+ ^3 p2 ?. X. u%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o- |+ z# ~. s k8 s, W
: @0 N- A/ N; O: c- T
% e: I; K& _+ d7 G
\ziju{0.025} \vspace*{.26in}
: Y' z- h' b/ n\begin{center}
8 A6 V- ~6 s4 h3 c! v( [{\heiti\zihao{2}\LARGE\bf \huge 序列覆盖映射的注记}%Semi-Fredholm 算子时的应用}
9 ?! _9 M0 U! i2 r# R) R%\vskip.1in
3 K1 B' h1 L0 P$ j$ v$ E%{\heiti\zihao{2}{\bf\huge Semi-Fredholm} 算子时的应用}
+ J% Y" W z B) F: T\end{center}
6 m% j2 x8 \: A+ T\vskip.12in% x- {! n, m- j4 G6 l, M
%-------------------------------------------------------------------------0 ?' a4 t- b! h/ a% ^$ X
%\footnotetext{}
6 N& g' d) `7 g; ~% w%\footnotetext{}
% w6 l5 r" K, L! C+ T%\footnotetext{}
' A! B/ [. k7 B. n' x- e%\footnotetext{\hfill\thepage\hfill}
, }9 I* M8 w9 S# b2 ~%\footnotetext{}
6 D" L! H! Q( t3 F\footnotetext{收稿日期: 2003-07-08.} \footnotetext{基金项目:
9 p, W+ ^4 g' t" F国家自然科学基金资助课题(No. 10271026),/ Y+ T7 k$ e. @" z: v9 q: ]6 i
福建省自然科学基金资助项目(No. F0310010) ,# N+ q% o2 k+ `$ E8 ^1 _$ x
福建省高校科技资助项目(No. K2001110).}- k0 k8 I* Q% }3 z2 n4 \, S
%数学天元基金(No. TY10126022)及973计划(No. 2002cb312200)资助.}
7 ]3 n' n6 [3 C" `! [\footnotetext{E-mail: linshou@public.ndptt.fj.cn} \footnotetext{*% Q) A7 ~# U% T) B) e5 J
作者现在通信地址.}3 k- h B% A- t( Z7 ~$ N
2 E/ L4 ?0 `. O$ w- {. a
%-------------------------------------------------------------------------3 b5 N1 j$ A4 f5 \3 L1 y) F
%\centerline{\Rightarrowrge\zihao{4}\songti 蔡俊亮}
! C5 N' b# T9 N7 B- J) H# L8 a) {, J7 m%\vskip.1in: e9 F: K A D% }/ H4 S
%\centerline{\small\zihao{6} (北京师范大学数学系, 北京, 100875, 中国)}
- C5 n% G$ S% C- L. U s9 p* n%\vskip .1in
& l8 k1 z' t2 ?+ ]1 A: k" H\centerline{\fangsong\large\zihao{4} 杨 \ \ 凤$^{1,2}$,\quad 钮凯$^{2}$ } \vskip.1in7 L1 X0 d& h4 X
\centerline{\small\zihao{-5}(1. 漳州师范学院数学系, 漳州, 福建,8 F) [1 {4 \6 l8 i; ~, a5 a
363000;\ \ 2. 宁德师范高等专科学校数学系, 宁德, 福建, 352100)}7 J2 k" g$ g" t; ]
\vskip.25in {\narrower\fangsong\zihao{-5}\small {\zihao{-5}\heiti
5 ?3 n+ ~+ |% \- A摘要:}\ \ J( j) n) y% j& d' |, i( G
本文的主要结果是构造两个例子分别说明1序列覆盖的商映射未必是弱开映射,
; f0 E/ d% h3 ^4 w& t- N0 h度量空间上的序列覆盖$\pi$映射未 必是1序列覆盖映射.. s; o3 a+ ?0 G( z
* w' N' ^8 s r- y{\zihao{-5}\heiti\tenbf 关键词:}\ \ 序列覆盖映射; 1序列覆盖映射;
5 W8 S; [. c) @. \" l: k弱开映射; $\pi$映射; 商映射5 x9 q6 l4 f1 a5 G
. ^" L u( ], ?' I
{\tenbf\zihao{-5}\heiti MR(2000) 主题分类:}\ \ 54C10; 54D55; 54E40
' k# u# u8 y. v/ {\tenbf\zihao{-5}\heiti 中图分类号:} O189.1
/ y$ [2 L6 Q6 c4 W
8 m/ f. x$ W2 C9 d h T %%{\zihao{-5}\heiti 文献标识码:}\ \ A\qquad {\heiti\zihao{-5} 文章编号:}\ \' o) l% P% Z- g6 j2 @
%% 1000-0917%(2004)02-0229-07
' L5 X. l, v7 v! v y$ r
G0 S. @4 Y& @! s }
% \" D9 k6 S0 u5 X2 t. O- o$ K, Y# d& l; m
\normalsize7 }5 F/ {0 o" Y( A
* S" O7 L3 M R
\baselineskip 15pt \vskip.15in
; C, D& X9 \- P: u; P/ E9 A& N1 J- U6 o$ J* Y6 Y2 S( W
\sec{0 引言}8 n. w, y; k/ G& o- _9 O; l
) H5 l/ d, c: u8 p
7 j! u! Y+ Z9 N1 @\sec{参考文献} \baselineskip 13pt {\footnotesize
" W l+ K% z; }% Y+ A+ p/ m( ` m9 w! {2 j$ f% b' I) ?0 I8 @$ ~
\REF{[1]} Daves, C, Kahan, W.M., The rotation of eigenvectors by a) b9 v/ M0 S" L# \
perturbation, {\it SIAM J Numer Anal.}, 1970, 1(2): 1-46. \# q: t, G) o: g$ S! M' r
! Z" ?* o! [' x# `
} E2 B* l4 s! L% D& N9 X
, Q4 h, F% ]/ J
\vskip .25in
5 _+ v% n/ S$ [, M\begin{center}
+ V. c6 r5 H$ G& c8 ~' i{\Large\bf Relative Perturbation Bounds for }\\[.1in]
6 B9 ` z+ o$ b) T, {6 x%vskip .13in
4 Y; ^- m9 Y3 E: ?! `; Y4 q* {{\Large\bf the Subunitary Polar Factor }\\[.1in]
. L, v) q/ S8 N! S$ f3 f5 Q4 _* y%\vskip .18in- B6 Q8 r e; S/ b4 C
{\Large\bf the Under Unitarily Invariant Norms}\\[.18in]
% Z3 p1 ?/ J+ ]5 S( K! z M' B%\vskip .18in9 v5 Z6 o" ^7 A q
{\normalsize\zihao{5} YANG Feng$^{1,2}$, \quad NIU Kai$^2$}\\[.1in]4 U, L8 U1 \' y$ s$ K4 I
%\vskip .08in
/ r$ V/ _' |$ O6 d{\footnotesize\it(Department of Mathematics, South China Normal
1 c' ~) p. \! r; ~( l' Z% x+ u* E: XUniversity, Guangzhou, Guangdong, 510631,
: n# f, M, Q: o+ y4 a P. R. China)}\\[.25in]' v7 g, e+ ^ j& P" N, [
%\vskip .1in, c! r$ n8 a) s& [$ b9 r
%{\zihao{5} Liu Yanpei}, ^8 n7 u; T! I" h, a% r2 C
%\vskip .08in8 T) N0 V- V0 j* G' v
%{\footnotesize\it(Department of Mathematics, Northern Jiaotong University,
/ h0 }1 v: W! v G%Beijing, 100044, P.~R.~China)}
, g2 E3 \$ n& T; Y\end{center}
- ~0 J" ]6 v+ m e) c( ^- V3 \, N%\vskip .18in* V, n' }! m( H! q* G
\baselineskip 14pt/ z- b4 h! ~" {$ F2 q
5 h) Y# E+ u7 j! m\zihao{5}\normalsize {\indent{\bf Abstract:}\ \* b. S& T. X z# O- G
# v; F# F/ {% m" {& S1 d* G% g
{\bf Key words:}\ \; C5 R! J# M4 h+ V8 `2 u
6 C7 O# ~" v* n# X" n1 L9 Y. }
+ h- I/ ~. k' Q}
8 n* A6 y$ O' B) C2 l\end{document}
: I! [; h0 n, \. V% X& @7 g# f |
zan
|