- 在线时间
- 101 小时
- 最后登录
- 2017-2-24
- 注册时间
- 2015-6-1
- 听众数
- 68
- 收听数
- 1
- 能力
- 40 分
- 体力
- 2778 点
- 威望
- 14 点
- 阅读权限
- 150
- 积分
- 1975
- 相册
- 0
- 日志
- 0
- 记录
- 1
- 帖子
- 328
- 主题
- 180
- 精华
- 3
- 分享
- 0
- 好友
- 77
TA的每日心情 | 开心 2015-6-19 13:01 |
|---|
签到天数: 3 天 [LV.2]偶尔看看I
 |
|
大数据时代,变身「大数据企业」的七大原则 8 K3 d9 {( R4 u, y2 v) i, \
v' t8 _! z% q
& y0 d; A& h4 o3 @. i) d6 H$ t" y
大数据时代,你准备好用数据驱策公司了吗?这并不是一项简单的任务,迅速吸收、整合与分析数据的能力缺一不可,而数据又来自内部原有的数据以及未来源源不绝诞生的海量数据,最终你必须把数据转化成「洞见(insights)」,并且依此为本,能在各种状况采取最适当的解决方案。法国凯捷(Capgemini)管理顾问公司「洞见与数据」副总裁 Jeff Hunter 表示,他们调查了 1000 名企业高层,整理出七项企业转型成「数据为本」的过程中,所需遵循的七大原则。* q7 Y; I) s* t; S( h
! O' {" s! ^# I( ^ 原则 1:从原有的业务与技术中开始着手' T" Q- Q. G u! `
4 ^, D$ ^) D( B/ i. S6 ~! u
想要转型成以数据为本的公司,首先一定得先确认业务目标,接着便能规划战略蓝图,运用新的数据来源,达成你所设定的目标。数据成熟度(data maturity)与技术两者双管齐下的起点,将决定未来整趟旅程的行进过程。Hunter 表示:「若能适当的部署业务与技术,就可以堪屎系统性地开展业务流程与商业模式,并且明辨哪些质化元素能被量化元素取代。」4 ^: Q5 H# K+ g7 N( p, S6 p
3 J& x [$ A- D3 X2 ]9 E 原则 2:从相互连结的物联网中建造数据景观
3 k( B; ]1 q3 K2 M
+ k; [ o4 ~0 N0 M* U. z4 P& Y 「物联网」的实现近在咫尺,而且已经产生(而且会持续产生)史无前例的巨大数据。「存活超过 20 年的企业,近来不断设法制定企业数据策略,因为他们里头有数不清的数据市集(data marts)和数据孤岛(data silos)」Hunter 说。尽管公司组织努力解决数据孤岛的问题,但是宛如瀑布般倾泻而下的数据,只会一再造出新的孤岛,除非你的环境已经准备好应付那些海量数据,毕竟现在数据量产生的速度,远超 20 年前我们所习惯的步调。不过幸好,大数据热潮孕育了许多可以协助大企业管理笨重数据负担的新技术,因此能否好好善用那些新技术,把数据转化成真正的业务需求,是企业在形塑数据景观时不可或缺的原则。0 x% \6 S* F5 _6 ~. x! Z+ J. t
! x% e/ c3 o% h& q) @ 原则 3:建立数据科学与分析的文化, V6 r. \- v- [" n' \
) e6 f+ r% k' U5 g 想靠「数据」发威,光有技术不够,还得建立一个理解数据、而且懂得利用数据的文化,两者缺一不可,文化甚至更加重要。「对我们来说,『懂数据』不再只是副产品,而是重要的资产,你要培养『这是一种资产』的心态,你要知道,数据有可能帮你重整业务流程或挖掘出新的收入来源。」因此,数据科学不该只是几个人的职责,必须灌输到整间企业的全体成员身上,让所有的决策都变得更明智。
! i! q4 |5 U- Z( z7 S9 h* p
/ \6 ]+ u4 F1 n 原则 4:从小做起,不断迭代4 J0 c3 h" N- {* H6 ]+ R, Y' _
, u4 ^7 ?3 \0 K" p$ U
我们可以预期使用者对于资讯与数据洞见的需求会愈来愈多,这表示他们要能随时随地获取这些资讯。这不是一件容易的事情,但是企业可以先从「小事」做起,找到一个可以从数据中直接受益的业务目标,接着反覆改善(iterate),让团队不断汲取经验,最终能以数据洞悉、解决业务问题,「这个过程可以持续复制、重复消耗,」Hunter 强调,Capgemini 针对技术、人才与分析的投资,总是能被客户一再使用。* O3 k" c/ c) R! n" t
% t4 e0 Q0 ?: `4 W* j6 ~5 j 原则 5:用数据科学丈量数据科学的成败# n. J$ L* }0 r7 c$ ~# a
4 y, v* m% Z: n' g) @, o! _8 i
要让数据当个称职的主角,你得采用数据科学的方法来判断数据科学是否成功,这不是什麽跳针的玩笑话。随着你的企业从数据洞见取得的营收愈来愈多,你得要能辨析数据政策是否产生重要的改变,要发展一套尺度用衡量成败。「我们怎麽丈量成功或失败?『洞察』就是我们最重视也最关键的 KPI。」0 @3 ]$ }: i8 W! P; T% [
4 O- |& ~/ }0 ` 原则 6:数据的安全与隐私至高无上
/ X) Z* J) ~) q8 [& F7 O. `# G/ `
* Z% H. s+ X$ v! h 只靠直觉行事很糟,但未经筛选、从良莠不齐或不可靠的数据中采集作为决策考量,更糟。倘若你无法处理数据安全以及尊重隐私,将会导致企业暴露在险境之中。「维护数据资产的安全与隐私,是最基本的要务,我们总是尽己所能管理数据。」Hunter 强调,无论数据产生的速度多快,都不能轻忽契约或有违反法律的情事。
9 C. G s3 ^2 _3 E# U9 J7 q+ }: Y, X7 g ]: a
原则 7:赋予成员洞察「作用点」的力量( G! c% j; ~; n8 [/ _ _
# Y ~4 U: ?8 x8 Q' O/ w
唯有公司内部的成员面对数据洞见时能够迅速产生反应,数据才有价值。这些洞见在「作用点(point of action)」上必须有所区隔,比方说,如果现阶段的目标是优化购物车,反应够快的人就会想到可以在交易完结之前,提供消费者某些推荐商品。Hunter 以机械操作员来比喻,就是要让他们能够预测钻头何时可能会损坏。建立数据为本的心态,而且懂得因事制宜,方能抢在事情发生之前预做准备。
4 T& M3 k3 Q- Z# S& P+ ?9 G! E) y( {( `; E5 X4 N5 ]
2 y' j' v9 v, U+ G6 U! j1 g8 {/ T2 ?8 p
6 k! {$ U q8 O4 }# t
|
zan
|