- 在线时间
- 101 小时
- 最后登录
- 2017-2-24
- 注册时间
- 2015-6-1
- 听众数
- 68
- 收听数
- 1
- 能力
- 40 分
- 体力
- 2778 点
- 威望
- 14 点
- 阅读权限
- 150
- 积分
- 1975
- 相册
- 0
- 日志
- 0
- 记录
- 1
- 帖子
- 328
- 主题
- 180
- 精华
- 3
- 分享
- 0
- 好友
- 77
TA的每日心情 | 开心 2015-6-19 13:01 |
---|
签到天数: 3 天 [LV.2]偶尔看看I
 |
大数据时代,变身「大数据企业」的七大原则 / r. _/ D2 h* C- K9 R/ ?5 u: w3 \
+ {$ g. \+ T6 o9 I3 d3 Q7 E5 V- c7 Y+ R+ A
6 F' Q* s, L: r/ K- E* x0 T 大数据时代,你准备好用数据驱策公司了吗?这并不是一项简单的任务,迅速吸收、整合与分析数据的能力缺一不可,而数据又来自内部原有的数据以及未来源源不绝诞生的海量数据,最终你必须把数据转化成「洞见(insights)」,并且依此为本,能在各种状况采取最适当的解决方案。法国凯捷(Capgemini)管理顾问公司「洞见与数据」副总裁 Jeff Hunter 表示,他们调查了 1000 名企业高层,整理出七项企业转型成「数据为本」的过程中,所需遵循的七大原则。
; j, ^9 C5 r7 l2 B c4 \8 b0 x# x
原则 1:从原有的业务与技术中开始着手: _+ B" ]( ^! q8 N5 c, X9 i
- u3 Y6 z; r1 G; Y 想要转型成以数据为本的公司,首先一定得先确认业务目标,接着便能规划战略蓝图,运用新的数据来源,达成你所设定的目标。数据成熟度(data maturity)与技术两者双管齐下的起点,将决定未来整趟旅程的行进过程。Hunter 表示:「若能适当的部署业务与技术,就可以堪屎系统性地开展业务流程与商业模式,并且明辨哪些质化元素能被量化元素取代。」
; ]. e. ]5 c* u% ~6 p$ C+ T! A4 I- P6 ?
原则 2:从相互连结的物联网中建造数据景观1 j/ ^3 Z0 o# C! w7 z3 F
. M$ |+ _0 [- R# E
「物联网」的实现近在咫尺,而且已经产生(而且会持续产生)史无前例的巨大数据。「存活超过 20 年的企业,近来不断设法制定企业数据策略,因为他们里头有数不清的数据市集(data marts)和数据孤岛(data silos)」Hunter 说。尽管公司组织努力解决数据孤岛的问题,但是宛如瀑布般倾泻而下的数据,只会一再造出新的孤岛,除非你的环境已经准备好应付那些海量数据,毕竟现在数据量产生的速度,远超 20 年前我们所习惯的步调。不过幸好,大数据热潮孕育了许多可以协助大企业管理笨重数据负担的新技术,因此能否好好善用那些新技术,把数据转化成真正的业务需求,是企业在形塑数据景观时不可或缺的原则。8 b. C, U/ }) v' z# D
1 x1 j7 B$ X3 c! v6 `. r
原则 3:建立数据科学与分析的文化7 O5 L" u8 A+ e
0 g, j; a; O+ s) c i* W! W3 d
想靠「数据」发威,光有技术不够,还得建立一个理解数据、而且懂得利用数据的文化,两者缺一不可,文化甚至更加重要。「对我们来说,『懂数据』不再只是副产品,而是重要的资产,你要培养『这是一种资产』的心态,你要知道,数据有可能帮你重整业务流程或挖掘出新的收入来源。」因此,数据科学不该只是几个人的职责,必须灌输到整间企业的全体成员身上,让所有的决策都变得更明智。
# |# p- l& v, [- Q) }3 z; g2 ?* m8 k
原则 4:从小做起,不断迭代
! D H- x+ W0 T+ Q, q& H; ^9 T
3 c! g# C% b4 s 我们可以预期使用者对于资讯与数据洞见的需求会愈来愈多,这表示他们要能随时随地获取这些资讯。这不是一件容易的事情,但是企业可以先从「小事」做起,找到一个可以从数据中直接受益的业务目标,接着反覆改善(iterate),让团队不断汲取经验,最终能以数据洞悉、解决业务问题,「这个过程可以持续复制、重复消耗,」Hunter 强调,Capgemini 针对技术、人才与分析的投资,总是能被客户一再使用。$ L- [* g$ g* e: {3 v" M1 N4 G
5 x& r& |6 R# O/ Q a4 N. H 原则 5:用数据科学丈量数据科学的成败
. h$ b( p u9 ?
! q" l& s8 [8 n2 f& l) U 要让数据当个称职的主角,你得采用数据科学的方法来判断数据科学是否成功,这不是什麽跳针的玩笑话。随着你的企业从数据洞见取得的营收愈来愈多,你得要能辨析数据政策是否产生重要的改变,要发展一套尺度用衡量成败。「我们怎麽丈量成功或失败?『洞察』就是我们最重视也最关键的 KPI。」
% G H9 L3 X' _, i/ _2 d, ?# l; }" U0 k: E [& e9 T% R
原则 6:数据的安全与隐私至高无上# N" O/ B- S) L% b% e. P
8 V1 V) S" T* n9 o+ |6 k 只靠直觉行事很糟,但未经筛选、从良莠不齐或不可靠的数据中采集作为决策考量,更糟。倘若你无法处理数据安全以及尊重隐私,将会导致企业暴露在险境之中。「维护数据资产的安全与隐私,是最基本的要务,我们总是尽己所能管理数据。」Hunter 强调,无论数据产生的速度多快,都不能轻忽契约或有违反法律的情事。
' x2 z3 O+ q) e: }$ u- Z8 u
6 ]; N4 n6 t H/ F 原则 7:赋予成员洞察「作用点」的力量: s) l! S$ H" w0 K1 O, ^# ]
4 }; _ J+ P7 {( D. z" L
唯有公司内部的成员面对数据洞见时能够迅速产生反应,数据才有价值。这些洞见在「作用点(point of action)」上必须有所区隔,比方说,如果现阶段的目标是优化购物车,反应够快的人就会想到可以在交易完结之前,提供消费者某些推荐商品。Hunter 以机械操作员来比喻,就是要让他们能够预测钻头何时可能会损坏。建立数据为本的心态,而且懂得因事制宜,方能抢在事情发生之前预做准备。
' D9 u; D. u8 }* a, G8 D6 F" `5 t7 G4 V8 Q$ e5 x
; o0 F9 d9 K8 _; E* W* ?: l. b! {9 w G0 ?% W. S
, k! w" `% k3 x7 k* n" K9 z; O
|
zan
|