%标准粒群优化算法程序" F! V) w8 F# L
% 2007.1.9 By jxy4 U- l) Z1 P3 z( G% z @' B
%测试函数:f(x,y)=100(x^2-y)^2+(1-x)^2, -2.048<x,y<2.048 . G- _, ^' p5 \8 R%求解函数最小值 # O1 J( \$ ?3 i. g% ?, I o' I f
global popsize; %种群规模7 X6 x+ r3 j v; p$ w, H5 X
%global popnum; %种群数量 ~0 Z3 ]. u# ? iglobal pop; %种群 4 a& X% l- e, T' |* [2 a: K%global c0; %速度惯性系数,为0—1的随机数- Z* {0 O( B5 g7 v
global c1; %个体最优导向系数 4 e0 F- s T$ h6 I/ A# u8 p' tglobal c2; %全局最优导向系数 2 u7 G6 b4 W. i% R P+ V: k8 kglobal gbest_x; %全局最优解x轴坐标 # ?. E- y& W1 n% _global gbest_y; %全局最优解y轴坐标 0 o5 w- _, Q0 M. k- e6 a- _global best_fitness; %最优解 / z0 G: F( T) }0 qglobal best_in_history; %最优解变化轨迹 " P( x$ \& @$ X( Yglobal x_min; %x的下限3 h2 m2 T c0 e- X
global x_max; %x的上限' u8 \: g6 s; |1 {
global y_min; %y的下限. `" H. `) Z& I9 _
global y_max; %y的上限& ]( B2 [3 s2 u/ Q& Q+ _4 U9 `
global gen; %迭代次数 0 t7 c: J; S+ V8 f R* q' t5 iglobal exetime; %当前迭代次数9 `$ j! w, Y) \# @: N1 @6 O! `: n
global max_velocity; %最大速度 0 @) b2 W) O( l5 Z! }# F5 L) i! h' ^) d/ B5 K
initial; %初始化" Q. l D) \ j; A/ H* K
) U% T5 F' Z+ O9 n8 c6 k0 rfor exetime=1:gen 6 Z8 ]1 r$ t8 {% r* ?. n; Y2 D3 r. i& toutputdata; %实时输出结果3 o4 N1 B& k# H' ]6 b
adapting; %计算适应值 . f: v& \2 p1 k: H8 S9 p% Berrorcompute(); %计算当前种群适值标准差 2 `) s/ d. u- b! supdatepop; %更新粒子位置 " H- ?+ S0 u) J. Spause(0.01); 7 C/ X4 T+ f3 E/ z' Fend# Q, t" M( u0 n2 P- R+ ]+ G
& K/ }5 o) d2 b5 ]
clear i; 7 ?+ L. G0 z6 D; @: Nclear exetime;7 d: a4 F/ v+ V, W
clear x_max;% k8 S$ @* d4 M- Q V
clear x_min; 7 F: O8 {& _4 a2 `* ]* F" c" p, fclear y_min; / I- H$ E/ P! Q3 ^$ ^ Pclear y_max;! a4 P, a2 I8 K" u/ w# L
9 U, _9 J+ [4 S$ |, F& K
%程序初始化 9 w& I: V$ R" T/ G8 q h2 T' M+ p, [
gen=100; %设置进化代数 a/ w, c' b% a+ Y) N+ k4 t
popsize=30; %设置种群规模大小9 h4 w# W' s+ m
best_in_history(gen)=inf; %初始化全局历史最优解1 w5 h1 ^3 n' O8 |
best_in_history( =inf; %初始化全局历史最优解 ) n4 ~# u& s5 n, o. X# f0 Hmax_velocity=0.3; %最大速度限制0 K# O1 f% E+ W6 @# A
best_fitness=inf;! m7 H' B: t& G& j
%popnum=1; %设置种群数量. p% q0 f# I8 q5 |- }
/ F' t' x1 q1 _8 [- R" A. {
pop(popsize,8)=0; %初始化种群,创建popsize行5列的0矩阵& l r v) C* R' l( U8 |+ a, C) l7 f
%种群数组第1列为x轴坐标,第2列为y轴坐标,第3列为x轴速度分量,第4列为y轴速度分量 1 R6 @" r6 E4 G%第5列为个体最优位置的x轴坐标,第6列为个体最优位置的y轴坐标$ H9 k$ ?. T1 B
%第7列为个体最优适值,第8列为当前个体适应值 ! \7 I" h c: S3 R# z! @# r: k- K. q' s+ ?
for i=1:popsize * r, H* h* S, n& }4 m2 M3 x# }( B2 `pop(i,1)=4*rand()-2; %初始化种群中的粒子位置,值为-2—2,步长为其速度0 A* T# m/ [6 T. c/ W S
pop(i,2)=4*rand()-2; %初始化种群中的粒子位置,值为-2—2,步长为其速度5 l! M, x" N Q
pop(i,5)=pop(i,1); %初始状态下个体最优值等于初始位置8 m8 Q% Z& Z' [5 N" ?1 ^
pop(i,6)=pop(i,2); %初始状态下个体最优值等于初始位置 % k) @% z/ N" Q/ D7 ]9 A& {pop(i,3)=rand()*0.02-0.01; %初始化种群微粒速度,值为-0.01—0.01,间隔为0.0001 ' T X1 _6 q: A% h( z: spop(i,4)=rand()*0.02-0.01; %初始化种群微粒速度,值为-0.01—0.01,间隔为0.0001 " p7 d- Q L& E" T; E2 k' t. C7 Gpop(i,7)=inf;8 D/ M; [0 P! b& l( G: X7 z
pop(i,8)=inf; . u8 ]( S% [4 V+ K; T( {end: a1 t8 q% a" u6 b6 j
6 C3 _* {) t& S- R" ?% z
c1=2;1 v' j& [' G* ^" F5 V+ N8 e
c2=2;% W& T8 o: B( j# X( ^4 e& |
x_min=-2; 6 e" F4 U4 h+ D; l' h+ ty_min=-2;8 ~3 F) I& _, I u& p5 g
x_max=2; & {, |' o' b j+ r4 k4 z* K1 |y_max=2;1 M l4 ~% c+ n, W" V
; P" X/ ^0 x0 ?: xgbest_x=pop(1,1); %全局最优初始值为种群第一个粒子的位置 , E* A1 S* Q6 C$ C7 Jgbest_y=pop(1,2);7 H+ f- }4 ?; _" Q/ C- {
8 ?: J. I8 F |8 k+ N
%适值计算6 A: X/ w8 |* _2 m8 d( T( M/ Y
% 测试函数为f(x,y)=100(x^2-y)^2+(1-x)^2, -2.048<x,y<2.048 4 w& b: v0 [- p* a" h% b8 H3 Z; V( M8 ]: L7 n! K8 K" `2 R7 T
%计算适应值并赋值 0 A5 s- Q( ]3 g( U9 t5 zfor i=1:popsize 4 I; u7 S; _8 u, L9 m$ c6 S- |( X$ }pop(i,8)=100*(pop(i,1)^2-pop(i,2))^2+(1-pop(i,1))^2;+ E! {0 K/ ^1 L& |; D
if pop(i,7)>pop(i,8) %若当前适应值优于个体最优值,则进行个体最优信息的更新 B2 N0 A! v' m: I- c4 N4 q1 y, |# R8 G
pop(i,7)=pop(i,8); %适值更新 $ _, x# E" a! s' G& e; [ y# ^( jpop(i,5:6)=pop(i,1:2); %位置坐标更新 - n* ^9 R5 v' w2 Y+ e" q0 l# w* Uend $ c! L S/ @6 D9 g; oend: K3 B+ [# Z) t" U: [
. {, r- R P8 U: h8 H* i/ v
%计算完适应值后寻找当前全局最优位置并记录其坐标 7 T! a' X# V" X( ]$ z. ?if best_fitness>min(pop(:,7)) p6 z, e" H4 d+ Z% t0 ?9 U
best_fitness=min(pop(:,7)); %全局最优值 1 _0 U5 r, E, L6 J5 A T7 A+ qgbest_x=pop(find(pop(:,7)==min(pop(:,7))),1); %全局最优粒子的位置2 L/ A2 Q% q" L: F L+ B' I
6 }! n; i8 O4 A6 M' X
gbest_y=pop(find(pop(:,7)==min(pop(:,7))),2);) {1 q$ K$ c' k d0 P, W% p6 C' Y
end 6 C& F# }0 ?! j& ]3 V& b. G% m4 G$ N/ }# I7 u8 z
best_in_history(exetime)=best_fitness; %记录当前全局最优 , ^$ H# |1 u( d& W+ O1 u) r 3 X3 ~) e+ O0 ^7 {% R- Z%实时输出结果% q$ u6 ~( b1 w! C8 t3 K$ |
* U9 i; T8 {: v1 J
%输出当前种群中粒子位置! w6 t6 ^: G3 Q
subplot(1,2,1);" `6 M: }9 H5 G! X. l$ c5 K
for i=1:popsize ( ^4 d6 p0 A, b- Jplot(pop(i,1),pop(i,2),'b*'); 5 O7 o; ^% R: l3 c4 X" Xhold on;: ~$ j( a! M, Z7 i# }' K5 H
end * F1 b& R: I E" B/ T, f - Z+ ]" w' W+ g$ w- c7 qplot(gbest_x,gbest_y,'r.','markersize',20);axis([-2,2,-2,2]);' j3 d4 N0 R1 L6 I. ]$ k- C8 P* r# o
hold off; : d8 F7 U# I: y8 C' B0 C: x% t2 k8 |6 ^- _0 r' ^. ~; C* r9 Y- O. o
subplot(1,2,2);# q+ F8 a" Y4 ?! k/ `
axis([0,gen,-0.00005,0.00005]); & t8 x% l4 N! S; L$ q6 _! z5 Z7 }" W" [
if exetime-1>0 , G, s- c9 p6 ~7 ?( Eline([exetime-1,exetime],[best_in_history(exetime-1),best_fitness]);hold on; # h5 b; v+ Z* Y+ Tend 0 p. `1 {8 I; X- f0 n 9 u( W) m. r- T5 h%粒子群速度与位置更新 ; L" m8 M4 S/ ?$ I# ^) ~ ( Z, s6 N, k9 o%更新粒子速度 " h$ G$ j) M k8 x' C' B/ T- Sfor i=1:popsize6 ~* Y! q+ S7 r `, x
pop(i,3)=rand()*pop(i,3)+c1*rand()*(pop(i,5)-pop(i,1))+c2*rand()*(gbest_x-pop(i,1)); %更新速度 9 X$ l7 \! v" P# `$ Q2 Npop(i,4)=rand()*pop(i,4)+c1*rand()*(pop(i,6)-pop(i,2))+c2*rand()*(gbest_x-pop(i,2)); ( u. s9 M9 o9 X: v8 L1 Z& u3 k: T3 Zif abs(pop(i,3))>max_velocity 5 v) K0 \7 {9 d F" xif pop(i,3)>00 @# H7 z6 H. L" H* a
pop(i,3)=max_velocity; ( H4 e+ F9 ]0 [ d( gelse# A3 \- _4 H/ Y% L9 w6 b; q
pop(i,3)=-max_velocity; 5 P( Z; P0 o& u5 i" Fend 0 p/ Z" {3 t1 A1 ] |; Z' r& C' cend 0 ^. u, W0 d0 O: V$ o6 t5 Fif abs(pop(i,4))>max_velocity * F4 ~8 g" w1 x7 @8 L/ M% s6 Nif pop(i,4)>00 n l/ N; a$ M$ W* c/ L
pop(i,4)=max_velocity;) T, d6 Y% A. V- E
else1 h* ]( g/ {- k U, {& t* `0 e: I
pop(i,4)=-max_velocity; 6 K* i J: q' _1 `end " U) C4 H; r$ w! E Jend Y4 h, @+ Y: h/ L: r. a* m$ h
end% v ^& @1 f$ z3 M4 j( k6 ~
3 J/ r3 H ~) Y, G%更新粒子位置: }, Y+ L; H. m5 j
for i=1:popsize- [. Z1 O! |9 m; g$ B' x4 m' c
pop(i,1)=pop(i,1)+pop(i,3);; A. ~0 d& ^2 h7 g* G
pop(i,2)=pop(i,2)+pop(i,4); s! M i5 v4 A$ e9 g9 h
end- o. u4 J. n3 r) j2 q
3 O8 H% U- R9 O * R& _1 H) t, @+ P( P, s% |! D; m
7 L1 B% o" U) l9 u 4 s5 S* K s; K3 e J# s( Q
! B3 i* A3 g2 f; {$ b# h
1 ]0 F0 D+ r. f& K3 v8 ?% | 1 E8 |$ O+ s' i! Z+ x, i6 H Y/ x8 _; E W. ?0 `9 {" o ]6 G0 K
. w) {% p- |5 B! ~* o8 c0 P5 y; k
1 H/ \3 j6 \/ _% w
# A9 Z3 d; c( d6 T2 j# e# U ' }# b; ~( l4 a, ]! T- E4 x) S; Y
0 J2 x3 D* g- I- t9 y& _1 a/ F0 W 0 u g, H: ~ q7 A
0 _% s' A2 G/ N" G ; d$ S# R2 c# V3 O2 z/ Z
6 f9 X* x- S0 Y7 s3 Q% z% A SIMPLE IMPLEMENTATION OF THE ; }( e8 h0 y! {5 @5 f% Particle Swarm Optimization IN MATLAB. ^& Z* ?4 O5 w+ Z$ R# i
function [xmin, fxmin, iter] = PSO()- n: X8 U2 `. }* S E
% Initializing variables3 t' t% V9 D- ^4 L- K" ~
success = 0; % Success flag - w# ^) m7 ]3 y! ~1 IPopSize = 30; % Size of the swarm 8 P4 M! b+ ~$ y! _! o8 oMaxIt = 100; % Maximum number of iterations( P9 y) ?. i* E9 @; t
iter = 0; % Iterations’counter 2 {+ t9 n3 h( h d; G9 R) _fevals = 0; % Function evaluations’ counter % F' N7 X' q d; E) Mc1 = 2; % PSO parameter C1! J0 D& k- b, o; K7 f- F1 a
c2 = 2; % PSO parameter C2% }% Y3 d1 u, d( M+ y& v2 D! O$ g$ a
w = 0.6; % inertia weight ! r7 S( o! T1 ^ % Objective Function k9 h* C! c9 W$ |& ?f = ^DeJong^; + W' N$ X7 z- I3 J: A E+ r
dim = 10; % Dimension of the problem; L6 `) O4 m) E, t5 E0 V
upbnd = 10; % Upper bound for init. of the swarm7 d8 H! O5 M+ k" b
lwbnd = -5; % Lower bound for init. of the swarm( F8 E4 ~5 R( Y# Z1 d q% A
GM = 0; % Global minimum (used in the stopping criterion)% z8 L! m- ?4 I/ K4 C
ErrGoal = 0.0001; % Desired accuracy - T: j1 R; u" z o7 b& i9 x) \& G- L; l( `6 z- ^5 x
% Initializing swarm and velocities8 T* b7 ]" R; R4 d4 C
popul = rand(dim, PopSize)*(upbnd-lwbnd) + lwbnd;& {( F. f2 R& ]+ q9 _& [
vel = rand(dim, PopSize); 9 a8 n1 L. |( [0 h, }, I, Q 7 Q' }" l& a c9 ]; Afor i = 1opSize,. l* F) U: f ?* E# \) }
fpopul(i) = feval(f, popul(:,i)); 6 V" X9 K- o( ` fevals = fevals + 1;2 d0 K. R$ i6 x
end6 p( U- K w: x' y1 n
, H* ]+ B, h, O% F
bestpos = popul;- F$ X5 z* C5 M1 n
fbestpos = fpopul; Q9 q. q! C$ V: b4 [9 q
% Finding best particle in initial population( W5 F# h- [+ f' b: W0 V6 k% o
[fbestpart,g] = min(fpopul); : [4 A5 {$ c- r1 ]$ \+ l/ l1 @lastbpf = fbestpart; * v7 T- d' w. p) X, p/ t1 M7 C+ I4 E: e9 x
while (success == 0) & (iter < MaxIt), 0 k3 a) m; B, U3 p5 Q2 j3 d6 K
iter = iter + 1; 3 V- s# _+ m0 E$ x, v' P g, t/ f) m1 F( c( W. h6 e % VELOCITY UPDATE1 t6 o3 o& y5 _2 q, P
for i=1opSize, . q2 ]& m. q/ p! C7 T A(:,i) = bestpos(:,g);5 O# C4 }3 Q2 S; g+ @% O0 [
end ! O; e! D8 r: c* q; w9 n R1 = rand(dim, PopSize);% `5 y& G( b( p( S
R2 = rand(dim, PopSize); % }* y7 b8 u0 R# b" X y vel = w*vel + c1*R1.*(bestpos-popul) + c2*R2.*(A-popul);$ t: t6 H, a: X8 G" {2 R
2 S; t W/ L/ M/ @
% SWARMUPDATE+ z+ M* s6 S9 X; x' I1 I9 U. B( ]6 O* H
popul = popul + vel;6 c6 l# S% f6 _7 D5 X* x
% Evaluate the new swarm: z2 m# N$ U2 U
for i = 1opSize, , Q7 v8 D9 ?1 C3 d fpopul(i) = feval(f,popul(:, i)); 8 k9 l* f& t. w$ `: F. y fevals = fevals + 1; 0 d; i* ]' S, ]4 K T" j end * Y$ A% e2 z5 k: J4 ? % Updating the best position for each particle 3 ?' m. f2 {4 o) v9 s changeColumns = fpopul < fbestpos; 8 g( v* m0 p9 R5 g fbestpos = fbestpos.*( 1-changeColumns) + fpopul.*changeColumns; 3 ~) y% F: {8 b; V8 T _4 l bestpos(:, find(changeColumns)) = popul(:, find(changeColumns));5 o' J$ o. ~& k; p6 K
% Updating index g7 B$ p0 L) D% L7 O7 z$ X
[fbestpart, g] = min(fbestpos); $ H- |- s2 n6 i f3 \) U currentTime = etime(clock,startTime); 8 G2 R" a* H6 Y% q0 N3 d % Checking stopping criterion , i. w% k5 ^( k3 \- o0 L7 I' w; J if abs(fbestpart-GM) <= ErrGoal# ^7 u& g- P( ^2 z1 Q; k; s
success = 1;/ e) N) @* U: N1 R' Z0 Q
else 4 S- X3 H7 Q3 A6 H lastbpf = fbestpart; % A. r" Z1 d' ^+ G# e2 a* L/ { end: k7 s/ h. I% ]$ f6 f- e