%标准粒群优化算法程序 / E1 [# C0 O0 E/ N% 2007.1.9 By jxy # h* k0 V, M6 m( }% c%测试函数:f(x,y)=100(x^2-y)^2+(1-x)^2, -2.048<x,y<2.048 7 f* j2 ]( H% K( H0 A+ x' N%求解函数最小值 . `- I I7 ? G7 ~! `( B0 K9 a9 B0 S- l
global popsize; %种群规模 : t* \% P! K L%global popnum; %种群数量+ m5 [! E3 ]7 _1 o* U6 w
global pop; %种群 3 v% q3 w. e1 T" Q5 N; o%global c0; %速度惯性系数,为0—1的随机数4 U* \0 _- `# j1 ~, {
global c1; %个体最优导向系数# D& a7 e1 c6 l: s4 t! k
global c2; %全局最优导向系数 / w4 y% ?2 t$ a/ lglobal gbest_x; %全局最优解x轴坐标 & i+ a8 G" J/ ~7 l( G$ ^4 c! Yglobal gbest_y; %全局最优解y轴坐标; S- f" q6 E( m/ ]( R
global best_fitness; %最优解" ~; o& \( F. I* O
global best_in_history; %最优解变化轨迹 ( r, i' B- `$ T/ \& `; s# \5 ^# lglobal x_min; %x的下限' H' l% c$ H( l8 Q4 N
global x_max; %x的上限1 e2 U+ D: t: s! l5 Q$ m: Q0 K- ?
global y_min; %y的下限2 K) y, w! l) z
global y_max; %y的上限 N( Y: h) x: z( O6 ]& f) S6 `
global gen; %迭代次数' G4 m9 V/ h0 O% j4 b
global exetime; %当前迭代次数# i/ Q! Y9 B, ?. U6 A
global max_velocity; %最大速度* \& e+ N1 u6 w3 r: c0 H
9 _% U# V* ^- K0 L
initial; %初始化 # _4 e7 u4 d& Q& F4 n. G5 o ! f. a* L6 s& ~1 Z* H. {( Z% p1 gfor exetime=1:gen 8 g( o! t7 a& l7 J. l* G( O6 Loutputdata; %实时输出结果+ r5 t L# d7 A- y8 G" h5 ^
adapting; %计算适应值4 q0 @8 y) E8 @9 {5 w
errorcompute(); %计算当前种群适值标准差5 n) D$ a4 l5 O- o' `- R7 B+ N, _
updatepop; %更新粒子位置 8 d- ]0 {9 z! I# Rpause(0.01);" P, b* G) _7 n+ Y, j
end! }: u. z; [/ t" ^8 |
7 Z7 U5 c. ^0 Mclear i;' U: f: J1 ?, S4 T3 y* Y8 @$ q1 R
clear exetime;1 _& N; f( d. f& ^6 s9 M3 j
clear x_max; + }0 I; i0 B, l. F, Cclear x_min;; W7 X' B) B) @" g5 V
clear y_min;. j H9 m, d4 r: X# Z+ T( o
clear y_max; $ S9 O$ h" J# v$ \# T, d" ^ }! W- b
%程序初始化5 E: V" J3 C2 L% y) @! G9 h$ f
% k* l* q$ @# Sgen=100; %设置进化代数2 H$ `0 u8 c. y. b2 e- O4 M
popsize=30; %设置种群规模大小3 z7 \- t$ d o$ a) H" i' P5 Z7 G
best_in_history(gen)=inf; %初始化全局历史最优解 2 a9 ]9 Q) L+ U+ o( Dbest_in_history( =inf; %初始化全局历史最优解: p: J+ }" M# q* P" H1 w q& M
max_velocity=0.3; %最大速度限制' f/ ?) Z# |3 K' U9 O0 h3 f
best_fitness=inf;# p4 W7 ?' y/ b5 |2 c' X8 Z
%popnum=1; %设置种群数量 . i1 N0 Z9 h2 _4 {( O8 _+ J; \: k. l0 V3 }
pop(popsize,8)=0; %初始化种群,创建popsize行5列的0矩阵 ( p) ?% Y; g: [) b. f%种群数组第1列为x轴坐标,第2列为y轴坐标,第3列为x轴速度分量,第4列为y轴速度分量8 r: v4 P" p9 @* ?/ ~. p
%第5列为个体最优位置的x轴坐标,第6列为个体最优位置的y轴坐标! ^; ~3 h2 {8 Q- s* G3 C: V
%第7列为个体最优适值,第8列为当前个体适应值 4 h# v' e6 ~% \% {# V; v6 H$ K4 O. C& D
for i=1:popsize , {/ A) A6 T4 x9 U cpop(i,1)=4*rand()-2; %初始化种群中的粒子位置,值为-2—2,步长为其速度 . F4 e% v1 r) ]7 F/ V2 p2 npop(i,2)=4*rand()-2; %初始化种群中的粒子位置,值为-2—2,步长为其速度 0 L/ k% L& h9 h! X; O1 B" E# E2 |pop(i,5)=pop(i,1); %初始状态下个体最优值等于初始位置0 q) M! R& ^7 l4 Y) Y
pop(i,6)=pop(i,2); %初始状态下个体最优值等于初始位置 ' V. P+ `. B9 k- u. Rpop(i,3)=rand()*0.02-0.01; %初始化种群微粒速度,值为-0.01—0.01,间隔为0.00013 o9 G2 q# e& F+ K7 e/ F
pop(i,4)=rand()*0.02-0.01; %初始化种群微粒速度,值为-0.01—0.01,间隔为0.0001 , u% d; t( x$ ^# Xpop(i,7)=inf;7 g: p& i# I5 F5 j- ?
pop(i,8)=inf; / E. |6 w$ y+ p, i6 ^$ Wend 7 a0 D# y& \/ m2 D% y% t* J! v b 4 y& t2 H. k# ?; }* Z. @6 zc1=2; 1 K `, X; s5 Q. j1 Kc2=2;2 J( [+ \# `, W9 D5 R' [0 {
x_min=-2; ' X& p) e& f3 ?# N/ uy_min=-2;: T$ L$ s" \6 F b, }% C8 I1 ] p# d
x_max=2; . l0 U/ S' t+ D- I/ hy_max=2; . R( m' Y0 V* A5 l8 V7 `& s, u$ T
gbest_x=pop(1,1); %全局最优初始值为种群第一个粒子的位置 9 M2 Z9 D; J* Q+ P! [9 ^gbest_y=pop(1,2);# X+ A' T( P! q( V1 K" z* R
; W z n, k9 P2 n! ?%适值计算2 e& e W+ b5 u+ x
% 测试函数为f(x,y)=100(x^2-y)^2+(1-x)^2, -2.048<x,y<2.048 ! o! q, q8 i# l, E, c6 e & F6 \4 T R: o1 g%计算适应值并赋值, ?3 h* y4 T! u/ o+ O
for i=1:popsize ! W5 H/ @; w2 A4 npop(i,8)=100*(pop(i,1)^2-pop(i,2))^2+(1-pop(i,1))^2;; D) Q' L& m, L$ Q: H! j+ @
if pop(i,7)>pop(i,8) %若当前适应值优于个体最优值,则进行个体最优信息的更新) I, Q1 h! Q* i5 N
pop(i,7)=pop(i,8); %适值更新. u8 \" D7 `; O4 ?
pop(i,5:6)=pop(i,1:2); %位置坐标更新4 W$ b) g: Q1 v7 R( d v$ x9 l
end ) V# E0 ?, U, Qend# F, }- K5 j* y- J/ d" a5 s
. n5 ~! G4 }5 h) g8 K%计算完适应值后寻找当前全局最优位置并记录其坐标 % Y" f3 p; l: Mif best_fitness>min(pop(:,7))" k" r. U: k" V f9 \$ Z$ Y
best_fitness=min(pop(:,7)); %全局最优值+ q @1 X+ y# w6 B& R) U4 z* j# K
gbest_x=pop(find(pop(:,7)==min(pop(:,7))),1); %全局最优粒子的位置 ( e; p! u N5 j. T; U: X1 f# `& d( [/ e7 L$ v
gbest_y=pop(find(pop(:,7)==min(pop(:,7))),2);4 c! F- F$ g& _# }5 u M6 g) x
end ' t: j5 u- z6 D: [* Y% e* C. P& x& W5 j! `) [& \$ a _
best_in_history(exetime)=best_fitness; %记录当前全局最优 & X6 ?6 ]" Z; m1 K/ n0 ?- Y+ B# V # M( h. L/ I) U& Q: P, \" q6 w%实时输出结果 . ]. k) Y& N7 F% e) K % r+ G: g5 }# ~% x1 T%输出当前种群中粒子位置 , d6 L6 h& a4 X+ G* Q) dsubplot(1,2,1); ; y7 M4 l: P% n Q' [8 i/ }for i=1:popsize 3 Z$ I. }$ c B" u! g1 N6 Pplot(pop(i,1),pop(i,2),'b*');8 X4 d8 n* l1 b
hold on; 5 z H/ ?, Z ^0 C$ ~. I1 Zend % r8 ~5 d4 s& H9 o; N4 N N0 n. T* X# k
plot(gbest_x,gbest_y,'r.','markersize',20);axis([-2,2,-2,2]); % }2 G$ t& @6 E% N" l7 Yhold off; - u% n% V- G3 }+ }6 Y$ j, P+ T& ]' t5 G6 H
subplot(1,2,2); + Z; a/ ~( B4 S- \4 ^axis([0,gen,-0.00005,0.00005]); # u$ d( _" }5 B& g" [4 p+ j& D/ v1 E+ O3 {- B$ D8 _1 |% V
if exetime-1>0" B* M. e0 |$ {- i# X
line([exetime-1,exetime],[best_in_history(exetime-1),best_fitness]);hold on;6 O- O& S. \3 o0 F
end % @( j, F# _) _& X4 A* b) q1 v/ \+ P+ J! }* x# Z
%粒子群速度与位置更新 & ^+ m1 v* \0 s8 P2 m4 S# W& j& z : a0 q8 t$ a* g v$ h%更新粒子速度+ F) \& P( H! r) I! y8 W
for i=1:popsize $ ^& G) G5 r' F/ K! F# H/ Tpop(i,3)=rand()*pop(i,3)+c1*rand()*(pop(i,5)-pop(i,1))+c2*rand()*(gbest_x-pop(i,1)); %更新速度2 o! [+ B2 v0 b N: ~
pop(i,4)=rand()*pop(i,4)+c1*rand()*(pop(i,6)-pop(i,2))+c2*rand()*(gbest_x-pop(i,2)); 0 I) Q# l1 v4 _2 w
if abs(pop(i,3))>max_velocity " N! ]& W5 L9 a" P3 i- `1 L \- zif pop(i,3)>0$ B1 Z* A' y( J2 h
pop(i,3)=max_velocity; % V8 }' V2 _+ D0 ?4 g' celse 3 }3 M: k3 h: Qpop(i,3)=-max_velocity; & C) o4 S8 v! n! P7 xend. a% w( U$ m5 a; D4 l
end l; K6 I1 x1 ~+ u$ V, Y! jif abs(pop(i,4))>max_velocity% N ]; W6 m" y0 Q
if pop(i,4)>0 6 x; r( a, p8 Q3 X% Cpop(i,4)=max_velocity; 1 E/ P0 O1 S0 Y4 }) m* melse4 n& ^9 v3 X) l- c# S
pop(i,4)=-max_velocity;1 u7 o( O/ ?, f y. f
end ' v+ h. U6 E( h2 s3 p7 B( jend ) E% ~# H3 {- ~ M; V4 T" Send' Z: t+ `# e, v3 V$ |# C2 e7 N
5 d9 P: A& C- c1 u D' R
%更新粒子位置. m0 z+ {: `* x: z
for i=1:popsize $ G* c8 N3 |2 Mpop(i,1)=pop(i,1)+pop(i,3);/ z5 q4 R; \4 j7 a
pop(i,2)=pop(i,2)+pop(i,4);' N2 N: @" O. B# O4 g9 p% |9 j4 p
end 6 B! h$ p8 ~. e3 h8 t. l " N/ V6 W; \( b , I+ M) f( _' g7 k5 _6 R ) ~: Y- M+ ?: U $ `& T! w# z. ~. L6 Q+ _. @# ] / I# q- {3 C! a" ` , H6 N |4 `* v$ t
6 {8 m3 \+ ^- T& u: [
& V# h$ S: g. V. P k; a
: p* m" |1 _: X0 S/ a3 z/ E 6 X! ?# G9 x( w, N 0 @4 N: F' t# n' v7 b2 m" |4 b 6 l! y( i% J9 Y* ~
, c( n+ ?1 b. `& v( U- U; e9 w+ e 1 x+ U9 E% t" Q' |$ p 3 z+ p% q" D& Z/ o& K8 ~6 D 9 Q; j, i# |7 @2 S* o
' m4 U" G) U) ?4 T/ R% A SIMPLE IMPLEMENTATION OF THE 0 G' D; D5 {: e, U- y% Particle Swarm Optimization IN MATLAB . y) `4 G0 G: l8 J& s# Afunction [xmin, fxmin, iter] = PSO() 7 V8 y' ]1 c) E( {. D7 D% v% Initializing variables + ]! \: E6 a' Y5 a, K! D7 _success = 0; % Success flag$ W7 S$ J i& `/ w* v0 b: C
PopSize = 30; % Size of the swarm ; U* v$ i; i/ v: yMaxIt = 100; % Maximum number of iterations. ]4 T# _) Q8 M8 w( m; h
iter = 0; % Iterations’counter % U- I/ F8 o, Y6 M3 M- xfevals = 0; % Function evaluations’ counter 8 \$ L% E' `# q( @+ [c1 = 2; % PSO parameter C1* W' |$ X+ Z$ Y4 K
c2 = 2; % PSO parameter C2; L6 s7 Y \# N& s4 a
w = 0.6; % inertia weight) t! m/ C* ]! g. k" i. |! n% G
% Objective Function " @4 e. S9 q- \7 Q) y; h4 t4 f$ ff = ^DeJong^; . b9 l4 U8 w& u4 ^* p6 Sdim = 10; % Dimension of the problem! u* Z8 i) x0 ?; h$ c3 t. `
upbnd = 10; % Upper bound for init. of the swarm( [, i1 k. i! x
lwbnd = -5; % Lower bound for init. of the swarm 1 x1 p7 j u6 a7 p/ z3 m NGM = 0; % Global minimum (used in the stopping criterion); O2 _6 y9 i3 e1 G* x4 F
ErrGoal = 0.0001; % Desired accuracy $ {; k. {$ E( V9 C 3 y: }" u6 k2 p! P; P1 X% Initializing swarm and velocities + j6 S3 p: K% S0 ^( N- ypopul = rand(dim, PopSize)*(upbnd-lwbnd) + lwbnd;; v% @1 J! w0 {" ?6 E& \+ x0 }
vel = rand(dim, PopSize);( g0 x8 V% L( d+ t* h
2 s5 G2 O$ u+ ^" ~2 o- N4 u
for i = 1opSize,0 R$ W& B9 U6 y# n! K# d
fpopul(i) = feval(f, popul(:,i)); . M# M, B- \+ n+ X& X fevals = fevals + 1; 0 n* T# A" y. ~$ Z5 N7 Zend 7 N$ Z9 U3 @5 H- q$ u, U% u# v' c& \4 |
bestpos = popul; ; r+ i, U1 l! W! m( Efbestpos = fpopul; - q! |/ b: \9 b4 G" q9 g% Finding best particle in initial population* X$ m$ [- {4 H6 n4 O! O& ~
[fbestpart,g] = min(fpopul); ) i; F2 i+ x: u9 G0 Llastbpf = fbestpart;& B& L( k6 r) p