- 在线时间
- 472 小时
- 最后登录
- 2025-9-5
- 注册时间
- 2023-7-11
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 7679 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 2884
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1161
- 主题
- 1176
- 精华
- 0
- 分享
- 0
- 好友
- 1
该用户从未签到
 |
外点罚函数法可以用于解决一般的等式约束问题。当面临一般等式约束时,外点罚函数法的基本思想是将等式约束引入目标函数中,通过引入罚函数来惩罚不满足约束条件的情况。具体步骤如下:- W$ d" _3 g2 d( l) ]3 y
! j5 w1 V- R! Y6 I' |
1. **引入罚函数:** 将等式约束引入到目标函数中,并在目标函数中添加罚函数项,以惩罚不满足约束条件的情况。# K$ Q4 F% \( c; X! Y
2 Z' X# P5 F0 f
2. **增大罚函数参数:** 在每次迭代中逐渐增大罚函数的惩罚参数,使得罚函数的作用逐渐增加,从而强化对约束条件的满足性要求。6 C) h* F5 `. H. P( a
" y7 P7 X3 @+ B# j5 ~3 M1 q3. **优化目标函数:** 通过迭代优化目标函数和罚函数的组合,寻找同时满足等式约束条件和优化目标的最优解。5 t' }( H# s: K3 {( q# J
; R+ _3 e# w/ Z$ B+ i6 L+ B0 Y
4. **逼近最优解:** 不断重复迭代过程,直到找到满足等式约束的最优解,或者达到一定的迭代次数或收敛条件。
2 y- `2 o( b" |! |( l
# ]4 d7 `$ _- V9 b外点罚函数法的核心思想是通过不断增大罚函数的参数,将原有的等式约束问题转化为一系列的无约束优化问题,并通过迭代优化来找到满足等式约束的最优解。这种方法在处理一般等式约束问题时具有较好的效果,能够有效地求解复杂的约束优化问题。
5 }2 D3 r9 i% n1 R- X& K, m5 {7 z0 }
. A8 M1 S+ n2 A
( i4 j- f) @: A! |4 ~! \ |
zan
|