QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4122|回复: 0
打印 上一主题 下一主题

请问FindRoot外面套一个For循环的问题

[复制链接]
字体大小: 正常 放大

4

主题

10

听众

29

积分

升级  25.26%

  • TA的每日心情
    郁闷
    2015-6-6 15:06
  • 签到天数: 5 天

    [LV.2]偶尔看看I

    邮箱绑定达人 社区QQ达人

    跳转到指定楼层
    1#
    发表于 2015-6-2 12:57 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta |邮箱已经成功绑定
    1. lamda = 1.55 10^-6;% z4 U# h. e- Z% X6 N2 t
    2. k0 = 2*Pi/lamda;
      . n1 B' f3 Z. u\" k7 _
    3. n1 = 1.4677;(*纤芯折射率*)
      ) c, s- n) Y) G$ ~\" n- }2 `
    4. n2 = 1.4628;(*包层折射率*); e0 w* c% c! X/ q! k$ g$ P
    5. n3 = 0.469 + 9.32*I;(*银折射率*)
      # s; }8 N+ D+ W% C' C/ L
    6. a1 = 4.1 10^-6;(*纤芯半径*)+ |/ z# w- S- |7 l
    7. a2 = 62.5 10^-6;(*包层半径*)
      1 q. j\" f, Y) R- M  `+ w
    8. d = 40 10^-9;(*金属厚度*)- P, U# [8 z' }: J: n! O
    9. a3 = a2 + d;% F0 f  G9 x; ^1 ]5 X
    10. mu = Pi*4 10^-7;(*真空磁导率*)
      $ f4 x& `/ _# v9 R# N  T: a+ g
    11. epsi0 = 8.85 10^-12;(*介电常数*)$ L( n4 b0 t/ O* J* J
    12. , k% C, Q3 H/ X9 F3 w0 O1 p
    13. n4 = 1.330;1 J8 U5 J$ P  h\" e0 F

    14. ! ^1 [2 n, q) {5 C/ o4 B1 j
    15. neffcl = neffclre + neffclim*I;# E; x( W; T' H

    16. , r% M2 J' x- Q0 n7 w
    17. betacl = k0*neffcl;0 N8 U+ y  a' Q0 m
    18. omega = 2*Pi*299792458/lamda;# E3 l: k% p* c; t- G! e
    19.   o9 k: k, P% \0 }3 p8 s5 @' g0 R8 o! Y* M
    20. epsi1 = n1^2*epsi0;, H$ t* I7 ~\" ^: P
    21. epsi2 = n2^2*epsi0;8 E\" g  _8 n0 G) A0 B1 @! C
    22. epsi3 = n3^2*epsi0;' P. ?+ @# C6 _7 j1 {\" W
    23. epsi4 = n4^2*epsi0;
      & R# y4 b( B0 X# e8 ?

    24. : U2 f4 s\" @( o3 r) y0 O
    25. u1 = k0*Sqrt[neffcl^2 - n1^2];: a3 K- x3 S& X+ g9 D; H9 {0 C9 ~6 y
    26. u2 = k0*Sqrt[neffcl^2 - n2^2];1 O5 d1 P) [* C6 w8 T
    27. u3 = k0*Sqrt[neffcl^2 - n3^2];
      ; r9 U; q' Y! g$ u; L
    28. w4 = k0*Sqrt[neffcl^2 - n4^2];, E4 v# _% j) ^' a7 N% i+ b

    29. 7 o6 `6 k1 a0 f8 I
    30. Iua111 = BesselI[1, u1*a1];
      . j0 r/ Z9 j- Q) h) E4 z
    31. Iua121 = BesselI[1, u2*a1];
      / o0 ]) W$ @' [; |: b& Z& Z; d
    32. Iua122 = BesselI[1, u2*a2];2 i' v. Y9 h' ^6 [& N5 x: f5 B
    33. Iua132 = BesselI[1, u3*a2];
      5 L4 `% M+ j: T1 U; h/ V- G
    34. Iua133 = BesselI[1, u3*a3];5 _5 u0 E6 P! R' T: [3 v
    35. IIua111 = (BesselI[0, u1*a1] + BesselI [2, u1*a1])/2;
      ) P$ h9 N* T+ `
    36. IIua121 = (BesselI [0, u2*a1] + BesselI [2, u2*a1])/2;
      6 ~\" _3 T4 i. O( c7 D- @% @4 @
    37. IIua122 = (BesselI[0, u2*a2] + BesselI[2, u2*a2])/2;
      ( Z/ a9 S+ }, C# W6 f) y# @
    38. IIua132 = (BesselI[0, u3*a2] + BesselI[2, u3*a2])/2;
      - h' v* w* Z! A- ?
    39. IIua133 = (BesselI[0, u3*a3] + BesselI[2, u3*a3])/2;
      9 i\" `3 }  I0 t, x
    40. 1 q' A: O\" `$ p5 B
    41. Kua121 = BesselK [1, u2*a1];
      $ c0 U( K) s3 w\" L/ h! Q
    42. Kua122 = BesselK [1, u2*a2];
      : m; w1 W! j7 m, I$ [% W
    43. Kua132 = BesselK [1, u3*a2];! z$ t7 z+ v- D1 E
    44. Kua133 = BesselK [1, u3*a3];& b$ L6 w+ r! q0 X\" A% I. y4 i
    45. Kwa143 = BesselK [1, w4*a3];) Y7 f; K2 V' u8 }- v
    46. KKua121 = -(BesselK [0, u2*a1] + BesselK [2, u2*a1])/2;
      4 r8 f2 {$ e& b* [
    47. KKua122 = -(BesselK [0, u2*a2] + BesselK [2, u2*a2])/2;
      0 r! J' G3 p% e. [7 z7 w5 c
    48. KKua132 = -(BesselK [0, u3*a2] + BesselK [2, u3*a2])/2;% G: o/ c$ P! X) l5 E\" g
    49. KKua133 = -(BesselK [0, u3*a3] + BesselK [2, u3*a3])/2;
      9 t8 X  f* U8 ]2 R
    50. KKwa143 = -(BesselK [0, w4*a3] + BesselK [2, w4*a3])/2;
      8 I. t( N1 m1 F
    51. 0 z1 ?3 U0 P$ v% ^5 x2 v\" m
    52. H1 = (betacl*Kwa143*
      1 E8 D6 u  @! l0 m# c# ?, l; \
    53.       Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*
      0 n7 X3 C- V3 S% _
    54.        Kua122 - u3^2/u2^2*Iua132*KKua122) - (betacl*Kwa143*
      ( _. R! l9 Q2 e2 [) T$ M' g
    55.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*4 }; V4 P4 H- C9 T
    56.        Kua122 - u3^2/u2^2*Kua132*KKua122) + (betacl*Iua132*
      / _9 J4 `, J4 ?, y( M8 V1 K
    57.       Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*& U1 N) a; h( _, p2 J
    58.        Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*2 @6 a4 `+ z0 |3 c3 I$ r# E) ?6 t
    59.       Kua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
      6 B/ `6 e& B  K4 R2 F. t; a
    60.        Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);% Q# I% X6 e; e, G+ p& p

    61. 3 G! k6 C( U, @- J
    62. H2 = (betacl*Kwa143*  i1 g\" ?) |9 Y
    63.       Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*
      5 y/ O9 H0 O' P  Q; b8 y- `0 U9 M
    64.        Iua122 - u3^2/u2^2*Iua132*IIua122) - (betacl*Kwa143*( E! \8 D# d: i9 N' B( {7 K! J
    65.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*- }4 G' r$ u* h, t9 U
    66.        Iua122 - u3^2/u2^2*Kua132*IIua122) + (betacl*Iua132*
      9 X1 L1 N# Z+ g
    67.       Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*; Q0 I. q7 _! z3 h1 B
    68.        Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*) Z9 M2 @; t7 j# V* o
    69.       Kua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
      % m2 U$ \6 X9 `5 d
    70.        Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
      8 z+ p* [# \4 {; d+ t. u
    71. & W, |5 I5 _. N1 O9 e( G) Z  ?  F
    72. H3 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*
      2 s( N7 q* P, ^- b' m
    73.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*2 z; X5 [* ?  z+ `9 I3 Y
    74.       Kua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*; g9 e& C\" `  X) T- p- J' l- [
    75.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
      6 E: S  C  C9 o! T1 W
    76.        Kua122 - 8 W0 z2 N8 b# P# n& ~/ Z
    77.       u3^2*epsi2/u2^2/epsi3*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 -
      8 A& y7 m* ]  z7 ~
    78.       w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 -
      % Z5 \, x, x9 u0 Q/ n
    79.       u3^2*epsi2/u2^2/epsi3*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 -
      0 O9 v+ V2 n) ]) h% r
    80.       w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
        D2 m\" E$ d5 B& s/ H\" \

    81. ) ]: R! F' z8 j\" H3 F# d
    82. H4 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*0 k& B9 ?2 W$ r7 [# {3 U+ u0 z
    83.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
      . Z3 q/ ^% ]. l1 @
    84.       Kua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*, Y* i  K% M8 O
    85.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
      3 O$ z6 N+ h# b4 b
    86.        Iua122 - . ?5 F/ }% U9 W+ v9 x; ?' A
    87.       u3^2*epsi2/u2^2/epsi3*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 -
      5 M/ \; ^: V/ ?8 {
    88.       w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 -
      9 U9 C9 g( Z% M3 D$ c; K
    89.       u3^2*epsi2/u2^2/epsi3*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 - 9 a6 X/ D0 c$ @\" s, \5 \) D
    90.       w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);' t* S' V\" i( r- b2 a& \( y( Q) o
    91. 8 s, h7 g$ e% U' D  @
    92. M1 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*/ b% G) ~, O' G! b\" Y3 ~8 k
    93.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*6 j3 b1 g* x( q) O3 H
    94.       Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*: G$ L% N6 d: i. V
    95.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Kua122 -
      7 E( o* R5 `$ k3 v; o5 ?
    96.        u3^2/u2^2*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 -
      3 u6 U* H\" j& [
    97.       w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 - \" p# }  o4 r\" D7 r& p% S( E
    98.       u3^2/u2^2*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 -
      ) z( X+ w2 t$ L
    99.       w4^2/u3^2*Kwa143*IIua133);$ R% M8 f! x8 j
    100. 1 r7 Z3 i+ J: e1 r* D
    101. M2 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*6 f8 I' ?5 R, r- n8 I1 ~
    102.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*
        a5 k. l( n4 s! r! |# o
    103.       Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
      1 @* e+ H: c/ C- {! B5 n$ A
    104.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Iua122 -
      8 V& w9 @3 W\" I- w3 h3 N! Q
    105.        u3^2/u2^2*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 -
      9 u2 Q3 \' t7 }6 C6 z4 f
    106.       w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 - 0 \, M5 e( L; T8 y
    107.       u3^2/u2^2*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 -
      * V, a3 w+ r+ H5 o% y
    108.       w4^2/u3^2*Kwa143*IIua133);
      : ~' ~& C- `4 H/ @' N  e; a3 y4 {
    109. ' q& e  A- C  I
    110. M3 = (betacl*Kwa143** n$ R; C\" a4 @; \
    111.       Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Kua122 - & A) C- {- t/ E2 K: T2 ?
    112.       u3^2*epsi2/u2^2/epsi3*Iua132*KKua122) - (betacl*Kwa143*
      ! t. g( D: b1 X& a1 D5 E
    113.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Kua122 -
      2 ~& w; i\" ]# i- Z  M+ f8 ?% h
    114.       u3^2*epsi2/u2^2/epsi3*Kua132*KKua122) + (betacl*Iua132*6 z$ b- b1 h6 Y8 l' F4 Q\" f; O, J
    115.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
      % ]\" b3 ]9 |- B( V4 n& _. ?/ D
    116.       w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*, z4 Q; Y* ~, U/ P( s) S. O4 M; C
    117.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 - & b. @; h) C+ b  x6 u
    118.       w4^2/u3^2*Kwa143*IIua133);, J0 z( X, ]3 \3 N1 _

    119. # [/ u\" g! S$ p% x$ `  h6 ?
    120. M4 = (betacl*Kwa143*) `6 x8 Z\" R1 e
    121.       Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Iua122 -
      % d. z! m2 S! @9 l  ^  L
    122.       u3^2*epsi2/u2^2/epsi3*Iua132*IIua122) - (betacl*Kwa143*5 l2 S# c: g! V- l$ `
    123.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Iua122 -
      % f5 ]: ~! z. K7 U
    124.       u3^2*epsi2/u2^2/epsi3*Kua132*IIua122) + (betacl*Iua132*2 I5 U; P; d% m
    125.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
      : u$ ~9 r$ A7 [) t% j+ f3 v
    126.       w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*3 N6 o2 U0 ~/ R/ W! P3 r
    127.       Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
      8 J8 l1 ^7 ~! M, Y% A0 ]6 q; K
    128.       w4^2/u3^2*Kwa143*IIua133);\" V1 j$ L\" v+ Y$ M+ t( s
    129. 8 O' S5 C% Q1 q6 v
    130. R1 = u2^2/u1^2*Iua121*IIua111 - u2/u1*IIua121*Iua111;
      - c; A2 u3 K( n  U8 K: x) f0 |) k
    131. T1 = u2^2/u1^2*Kua121*IIua111 - u2/u1*KKua121*Iua111;% i& X  Y! W, ^1 s/ U
    132. U1 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;7 ]: s4 ^- Q6 i5 b) f
    133. V1 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;
      ( \& L/ s5 k6 l

    134. ! o! l% P$ [9 g( c0 W7 ~5 f- X
    135. R2 = u2^2/u1^2*epsi1/epsi2*Iua121*IIua111 - u2/u1*IIua121*Iua111;1 S6 g4 ~* Q+ b7 o# K1 v7 f; \
    136. T2 = u2^2/u1^2*epsi1/epsi2*Kua121*IIua111 - u2/u1*KKua121*Iua111;' K& n1 a8 ^  ?
    137. U2 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;  t( B; u& \* [
    138. V2 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;
      \" }\" i! |/ C* I4 G( K! R; ^+ B

    139.   l4 ]# Z7 ]. ~8 s( `) ^, |
    140. xicl1 = (-R1*H1 + T1*H2 + U1*H3 - V1*H4)/(R1*M1 - T1*M2 - U1*M3 +
      , l' y: _3 y' K\" C& Y
    141.      V1*M4);# ?9 j- n/ }+ Z4 Y
    142. xicl2 = (-R2*H3 + T2*H4 + U2*H1 - V2*H2)/(R2*M3 - T2*M4 - U2*M1 +
      , w* F\" l' H% L' q: A
    143.      V2*M2);
      $ f6 t  y3 {1 W\" k
    144. 7 X' W; I, O3 S. Y\" {% C4 a* v
    145. x = xicl1 - xicl2;- v/ C: j+ @8 I, y! ]
    146. x1 = Re[x];
      ' x: V  d9 V- ~1 i
    147. x2 = Im[x];' E! G, n9 }$ _  V; {* s7 J2 F( b8 S

    148. . T$ G* P8 c' \/ q6 F- B' z7 n
    149. FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];5 S( V- T( R# {9 T. K
    150. ]
      8 N6 M% u# Y+ U% c  j) V' t

    151. 7 B! n( n( x+ ?, R' J; E
    复制代码
    代码如上,结果是{neffclre -> 1.33017, neffclim -> 0.0000172055}: w- y6 ~# ^; |
    但我把FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];
    " F# t1 K& }& l# W换成. s/ s0 P7 c9 S1 s
    For[i = 1, i < 133, i++, neffclbase = 1.330 + 0.001*i;
      @3 ^# f0 X% q  |! r/ s: t FindRoot[{x1, x2}, {{neffclre, neffclbase}, {neffclim, 0.00001}}];
    4 a9 P# t& Q3 b8 P0 Y2 M: S3 X7 K' [ ]
    3 v& D; p$ s% @  m/ G  O4 L2 G就会出现
    6 a0 Q; U) j" V" u; Y& gFindRoot::lstol: 线搜索把步长降低到由 AccuracyGoal 和 PrecisionGoal 指定的容差范围内,但是无法找到 merit 函数的充足的降低. 您可能需要多于 MachinePrecision 位工作精度以满足这些容差.
    ' G& [8 `) X# \* c( u
    4 q8 i* G8 K" V8 E: d3 N请问是怎么回事?
    % C( [2 _- @# V. P7 D9 }) }' D; N' J! U- b7 d9 g: ^& C
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-10-1 02:10 , Processed in 0.305544 second(s), 49 queries .

    回顶部