由例子中的数据和案例可知,其中P(A)=0.001,P(T|A)=1-0.05=0.95,P(A)=0.999,P(T|A)=0.01;; U8 y$ p# H9 E! C
代入数据可得,P(A|T)=0.087。
也就是说,在艾滋病检测呈阳性的条件下,被检测者真正患病的概率仅有8.7%。严谨的计算告诉我们,这个概率居然甚至连10%都不到,直觉和事实之间发生了严重的冲突。 . K. Y @! t( V+ q( C5 E: m6 O$ ? M; B/ }$ k: M) K7 ]3 S" m) o* C
虽然,这个例子的数据是虚构的,与现实中的情况有很大出入:实际上误诊的概率远低于例子中的数据,某地区的患病人数也只能是通过粗略统计,与实际数据具有较大的误差。但是抛开这个例子的现实意义不说,实际概率与直觉判断之间的差距还是值得让我们深思的,同时也提醒了我们,我们的大脑也许并没有我们想象中的那么可靠。 ! E1 s' T3 w' H( u / r' h0 v; ~4 @