QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4047|回复: 3
打印 上一主题 下一主题

标准粒群优化算法程序

[复制链接]
字体大小: 正常 放大
ppbear321        

25

主题

7

听众

15

积分

升级  10.53%

该用户从未签到

跳转到指定楼层
1#
发表于 2009-8-12 13:25 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
%标准粒群优化算法程序4 x0 b: e1 y) |, L; e' s3 ~/ L
% 2007.1.9 By jxy
$ w3 K+ p/ W4 t" a%
测试函数:f(x,y)=100(x^2-y)^2+(1-x)^2, -2.048<x,y<2.0480 j- t0 t+ B% }3 M" h, ^& e0 [
%求解函数最小值
9 S# K: `: C) f$ j9 {( x& H7 b9 f1 |# h' V: L, ?6 ]
global popsize; %种群规模1 ~0 W/ h6 {3 {: r
%global popnum; %种群数量) E& B( U3 @5 O- m
global pop; %种群  t3 Z7 D! z9 f
%global c0; %速度惯性系数,0—1的随机数+ K: j, f% N+ j# ^: T- ~& |) o
global c1; %个体最优导向系数
1 s# t* f' s# M/ R6 _# xglobal c2; %全局最优导向系数
- _; c1 U$ z1 q  Q9 mglobal gbest_x; %全局最优解x轴坐标" X7 {0 H3 q  e& A" h  C7 x6 S! ?
global gbest_y; %全局最优解y轴坐标
$ A* p' n5 m$ |. v/ ]/ Gglobal best_fitness; %最优解# S  h+ a$ z+ o- F$ F/ ~: ^- |
global best_in_history; %最优解变化轨迹! z4 n, H) e' S! i0 Y
global x_min; %x的下限- Z% [& D7 o$ |
global x_max; %x的上限
+ P6 F! G2 n( F: e6 Kglobal y_min; %y的下限" L: C- q! Z* E4 S
global y_max; %y的上限
6 J2 H: l& v8 J6 N) g% M( Xglobal gen; %迭代次数% F( N# l+ v& ]* E4 P3 x
global exetime; %当前迭代次数, d/ k6 E# ^5 u3 X
global max_velocity; %最大速度
* R( E% l6 ^: J! R
  q3 v2 r  t7 \; Z/ ainitial; %初始化1 {6 P# y' g/ `! t" @5 f

/ ~" s8 \' K, e) Dfor exetime=1:gen
5 J4 D7 n( _, ?outputdata; %
实时输出结果( a: \! j; q5 G3 f" X$ ]
adapting; %计算适应值
$ L% h3 L4 v5 U) B- Yerrorcompute(); %计算当前种群适值标准差
! d7 Q$ Q3 S  }  h. v2 ?updatepop; %更新粒子位置1 r4 f% [& \) j
pause(0.01);
+ g& K& q; u0 y5 M* \end
: R4 U: F. h( h1 l6 x) \% b3 m8 z+ m3 ?  d1 j% @8 v" S
clear i;$ j0 P  @# F9 B- \
clear exetime;
, S7 H: U* q3 ]$ l5 Qclear x_max;
! W  x+ G. ~! }clear x_min;. h% v- W& M; p! t$ `( F4 ~
clear y_min;
; P" l# X, C0 Lclear y_max;
* Z. y# Q. A" U$ p9 ~  w, o9 I/ q# w* S( |# L, q5 {
%
程序初始化
% V3 @2 v  h: O1 s
. ]3 ~! e" d# X. j, W* S( Cgen=100; %设置进化代数" {& A6 a, G5 z2 c
popsize=30; %设置种群规模大小
- k5 G6 A7 z% L* R, {4 ?2 A+ }best_in_history(gen)=inf; %初始化全局历史最优解  M; E4 c: i% `, e; L
best_in_history( =inf; %初始化全局历史最优解5 u0 ~7 h' ~) I& T
max_velocity=0.3; %最大速度限制
4 }) K+ n  s$ N$ q0 X4 f9 l' wbest_fitness=inf;
# _9 e4 {! M3 ?  X%popnum=1; %
设置种群数量
; A( e8 x0 r6 \7 u5 }8 x7 B$ D: }
pop(popsize,8)=0; %初始化种群,创建popsize5列的0矩阵
1 A( A' N5 \2 R# ^- _1 \5 m%种群数组第1列为x轴坐标,第2列为y轴坐标,第3列为x轴速度分量,第4列为y轴速度分量
7 p/ n* n  |7 s6 n* E+ R%5列为个体最优位置的x轴坐标,第6列为个体最优位置的y轴坐标
* y2 J5 z; o5 |+ ?%7列为个体最优适值,第8列为当前个体适应值
& I3 A+ l) c( e4 X2 q* S+ G+ `) O' y# M/ p. F- R
for i=1:popsize
$ U# b$ ?4 i4 tpop(i,1)=4*rand()-2; %
初始化种群中的粒子位置,值为-2—2,步长为其速度
' a% l/ j0 ~7 J; t, }pop(i,2)=4*rand()-2; %初始化种群中的粒子位置,值为-2—2,步长为其速度
  x' J# b! M2 Y1 C1 R! {pop(i,5)=pop(i,1); %初始状态下个体最优值等于初始位置: ^4 {. t) r/ u$ I7 B+ `# ]- J
pop(i,6)=pop(i,2); %初始状态下个体最优值等于初始位置; T3 d/ {7 ?  c9 k$ M  ^) j
pop(i,3)=rand()*0.02-0.01; %初始化种群微粒速度,值为-0.01—0.01,间隔为0.0001
& V; P/ L& c5 u6 m1 vpop(i,4)=rand()*0.02-0.01; %初始化种群微粒速度,值为-0.01—0.01,间隔为0.0001
! l" O7 {1 B% A9 T8 e3 G( Vpop(i,7)=inf;  b5 R8 R3 |$ j
pop(i,8)=inf;* ^  h, k* e* }( E
end
* w5 ?5 o! u! `6 V6 E
- _- J- I$ o9 j" zc1=2;- r& k4 v9 ]/ {8 x, F& O
c2=2;" u5 e' R4 V5 p9 V3 E
x_min=-2;+ K, A1 N) {, _) B* P1 q
y_min=-2;
" D: X% |# d; }7 L. H' c9 t( rx_max=2;
0 E4 A+ R# j% w* ?y_max=2;, O' ?1 u8 k; Z2 E& \2 w

& z- }8 A$ a. I) \! q& \) u' C6 T. O+ ~gbest_x=pop(1,1); %
全局最优初始值为种群第一个粒子的位置
+ [# K1 \& A0 G& _  ~, j2 W! cgbest_y=pop(1,2);9 n2 w: ~( `/ g7 z* a1 W- U
3 y  w6 Y, ]+ u" n9 i# a; }
%
适值计算
) w4 s# t/ i# \1 r% 测试函数为f(x,y)=100(x^2-y)^2+(1-x)^2, -2.048<x,y<2.048
8 \6 \1 w. h0 P7 ?& k; b/ d& `2 j. W( [! q; S
%计算适应值并赋值: t6 O6 `$ D5 h! [2 v( F
for i=1:popsize& a! {# E5 W/ d  B' N
pop(i,8)=100*(pop(i,1)^2-pop(i,2))^2+(1-pop(i,1))^2;
4 }" A: V; h0 T: e& g+ nif pop(i,7)>pop(i,8) %
若当前适应值优于个体最优值,则进行个体最优信息的更新
8 C. f6 G' b- A  L* }3 F$ [7 Xpop(i,7)=pop(i,8); %适值更新
& V7 m8 M) `0 K9 opop(i,5:6)=pop(i,1:2); %位置坐标更新" S2 y) w* e" v( b7 V
end
  d8 j6 @  v( |' U0 U, z4 b* \# ]end0 N9 I0 Z+ S' L/ H  B

: B7 x9 J5 k1 y5 Q, m7 v%
计算完适应值后寻找当前全局最优位置并记录其坐标: J& Z6 [& }. r# j& k( o
if best_fitness>min(pop(:,7))  c6 J. j8 p: y
best_fitness=min(pop(:,7)); %
全局最优值
6 `5 |: x, \: Y) p* q2 y( }4 g5 jgbest_x=pop(find(pop(:,7)==min(pop(:,7))),1); %全局最优粒子的位置, [! h. b; ~  K: v8 s7 e4 ?6 O0 E

+ r5 _7 O% r7 g3 ?gbest_y=pop(find(pop(:,7)==min(pop(:,7))),2);
; ~. \, B% b) `9 L9 T1 X. }; nend" m: K& ~; J! ~- J

8 {# b( F5 X5 Y) a( M6 pbest_in_history(exetime)=best_fitness; %
记录当前全局最优$ s* f9 K2 U$ R# ^3 |

- L  o! j  S6 V% B2 R; q2 V%实时输出结果
9 j" U1 z0 y0 E: C# X8 u' ?
& Q8 p, o/ c' e8 U5 R%输出当前种群中粒子位置
' a/ r2 G8 Y0 D7 z: h4 ^subplot(1,2,1);: M: ~. ?, G' e  O) c6 Z: ?
for i=1:popsize
( ?$ R8 c' C2 L1 M6 |plot(pop(i,1),pop(i,2),'b*');
7 z, o+ v2 l, d+ i; R: d! v5 b: O' [( t- ^hold on;/ a1 |9 r0 K" R  j9 N3 N
end! t  B2 e6 o. Z

" h; v7 ~3 T* W' Q. cplot(gbest_x,gbest_y,'r.','markersize',20);axis([-2,2,-2,2]);( l; a) W, K( o: w4 m- u$ p
hold off;
* w2 J; e3 a' T+ a- Q2 x3 u8 ?5 R3 k& n2 s7 ^* f6 ^
subplot(1,2,2);$ r- S" q5 P# d; p7 e9 R
axis([0,gen,-0.00005,0.00005]);" `& F- P0 n2 S( X. m( I
( A. t* q5 V) v3 Y3 P
if exetime-1>0
5 F& @- {9 ]0 W, @( a5 b" t8 Uline([exetime-1,exetime],[best_in_history(exetime-1),best_fitness]);hold on;
6 I. m$ Z, d; l0 l  h) ~end
' e1 I+ _, d! ~+ C  l" Z
! E+ p' v4 h' w/ H- `6 m6 e%
粒子群速度与位置更新
! S' p! A3 @6 o8 [4 z6 m# d
; ]4 ?2 ]$ e7 }, v0 u1 T) P% u( m%更新粒子速度" V7 [( Q. j$ W% `( s) O# z! A
for i=1:popsize
: s) J6 G2 Z5 L6 W. gpop(i,3)=rand()*pop(i,3)+c1*rand()*(pop(i,5)-pop(i,1))+c2*rand()*(gbest_x-pop(i,1)); %
更新速度' d! v6 g+ @: P3 M& O6 Q7 o
pop(i,4)=rand()*pop(i,4)+c1*rand()*(pop(i,6)-pop(i,2))+c2*rand()*(gbest_x-pop(i,2)); 4 K" J: D- C) i
if abs(pop(i,3))>max_velocity' W, j0 x+ i7 \* F" s
if pop(i,3)>08 Z  ^) J$ z4 L, k+ W
pop(i,3)=max_velocity;7 }6 G" E5 z% D; c* C
else
+ R) A5 g( ^9 Y& `) k+ j! V" M9 V  ipop(i,3)=-max_velocity;' A/ p+ \- d/ n' F% `: d* n- |9 a
end
; Y6 T: h- Q4 P- @* C+ D5 }& jend
5 i. O8 E6 s* p" _8 x# \7 uif abs(pop(i,4))>max_velocity
6 ~) x* r) Y9 u& Z$ e, Mif pop(i,4)>0' g  o1 a+ Y  B4 N
pop(i,4)=max_velocity;" E; Q6 L6 v) i; A, C; W
else# y1 X; s4 R1 |! ], `; x6 {
pop(i,4)=-max_velocity;
% M% b2 J* R9 g* E8 G; Iend
* d  ?: s' H3 {* z) }1 H, Q, Mend, G1 s' d: t- T: w- e+ z
end
# m$ X9 [$ c1 U1 d( O8 s
4 h8 [6 }0 P% k5 @%
更新粒子位置/ Y# L, I3 t8 |' q: c7 `: Q9 w
for i=1:popsize
+ k+ J  z* }" P' X, vpop(i,1)=pop(i,1)+pop(i,3);! w( g+ t& f' Q# g! g
pop(i,2)=pop(i,2)+pop(i,4);# `* Q# |+ P% G6 O  B$ \* p
end
) `9 [  h1 W+ F) m8 }

/ A  q( U3 n  B
) q- [# i: z/ Y9 p: F$ ^
6 M8 E) a/ R/ `! o ! h0 ~  g4 O0 ]& [

* I* |0 P; I7 o, m3 `" _ 1 Z; u+ ?% Q# S
1 T) a/ x; F3 R7 t  h
* ]/ \- T4 ~; Z
7 W4 c" \( _7 [
9 ]: E" j: ?6 K' a+ b! i+ z

) M" q2 w4 I8 y4 r* ?
' Z9 b4 ~# l& {' F- U0 R
1 ^/ o3 ~( a3 q: \; g8 _
5 n6 ]+ s1 ]& `2 z$ _
6 e) O0 F+ N: M+ z4 Q$ J1 D
5 L$ v/ S3 a2 j8 Y- N9 a/ i; ~
+ _# m# t7 {% P* c* g% A SIMPLE IMPLEMENTATION OF THE
# M- Z7 d2 _5 K. S, g% e3 [% Particle Swarm Optimization IN MATLAB
5 N- X7 n) S2 U6 p  ?function [xmin, fxmin, iter] = PSO()1 u! O4 F; R5 f, }1 l2 H- P
% Initializing variables9 w+ H# K: C# Z% V0 Y
success = 0;                    % Success flag; Z0 l1 \0 Z0 N0 r: C2 ]; A; B6 g
PopSize = 30;                   % Size of the swarm6 y) \2 y. V& R( F( q6 A2 W1 j
MaxIt = 100;                   % Maximum number of iterations$ ?9 D' P. f& g5 ?( j7 ^
iter = 0;                       % Iterations’counter
7 y/ o* k8 {8 _' ufevals = 0;                     % Function evaluations’ counter
$ o4 }& W! y7 ?c1 = 2;                       % PSO parameter C
1: B  ^  p) _+ Z" g0 ]
c2 = 2;                       % PSO parameter C2! |0 J# J% v$ S7 ]/ ~
w = 0.6;                       % inertia weight( [- J1 T& S' {8 y2 M0 B
                  % Objective Function7 V9 U. ~4 t- m. S; c( q8 L
f = ^DeJong^;
# i/ x4 _  x3 z' C4 x& B( |dim = 10;                        % Dimension of the problem- V: m" Y6 f. A& J" W
upbnd = 10;                      % Upper bound for init. of the swarm
1 m; |+ \5 k0 {" T: ?+ H# flwbnd = -5;                     % Lower bound for init. of the swarm; `+ e- L5 A2 x5 h
GM = 0;                         % Global minimum (used in the stopping criterion)2 [2 v9 S# H$ `, d
ErrGoal = 0.0001;                % Desired accuracy
# b8 Z. Q& B  \) ]) N: G) ?9 X. |( b) n: b
% Initializing swarm and velocities' U. _9 {! V; x7 t
popul = rand(dim, PopSize)*(upbnd-lwbnd) + lwbnd;. R; j9 t, a" W8 `, G, a- V" S
vel = rand(dim, PopSize);! U( M1 U- H8 F  ?0 f/ e' ^
2 G  ]! c2 }) u* F% A9 k
for i = 1opSize,
9 p# f7 N9 K8 q    fpopul(i) = feval(f, popul(:,i));
3 `9 w. h: o0 |8 r6 v    fevals = fevals + 1;+ @7 B, O0 m0 F: m1 I- ?
end
6 U% Y/ \# Y$ j' Q) I% w; R3 R, E! N( S5 @& F+ N
bestpos = popul;4 A  M6 C* y1 A  ^* E. a; \& C7 Z
fbestpos = fpopul;+ L  x6 B5 Z& d( q7 i) g: |. ]* ?( |
% Finding best particle in initial population
' i" k% G$ O! C/ M- g# `4 U- Z[fbestpart,g] = min(fpopul);
2 Y; T- _. e' R- ]5 O5 N& slastbpf = fbestpart;
: _- b4 ^2 J* @1 H! G' d
( ~. U+ }3 Z6 ?; T% a2 uwhile (success == 0) & (iter < MaxIt),    0 C  a" O+ @  t: _2 [3 U3 H2 ]
    iter = iter + 1;
: J+ A  r( w$ O$ T+ R6 O
0 c2 Q' `" v( o    % VELOCITY UPDATE0 e7 c3 {( b2 i' z, g
    for i=1opSize,$ @& D3 M9 J6 K. }+ i% ]
        A(:,i) = bestpos(:,g);
) [; y: y- F) e9 a+ {- V    end* j  j; i( G) e2 `
    R1 = rand(dim, PopSize);
+ _$ P# ^" ]; k4 d    R2 = rand(dim, PopSize);+ T9 {/ K$ {, w, k# N' w! M
    vel = w*vel + c1*R1.*(bestpos-popul) + c2*R2.*(A-popul);2 b* z( U: k  E
/ J+ P* u8 p' q: h+ S
    % SWARMUPDATE5 n. M( D5 D) j2 L# g* {
    popul = popul + vel;) Y5 _7 w. H: y# a) F' w  A1 U8 h
    % Evaluate the new swarm4 S- f- _1 Q. U2 _% b5 V) e
    for i = 1opSize,/ v  F: z! V: ~
        fpopul(i) = feval(f,popul(:, i));
5 q7 o: d) G3 K5 O5 L% T        fevals = fevals + 1;) L3 m. J2 o1 F! L
    end
% D( B% N& y1 z+ c    % Updating the best position for each particle8 e, q" v6 T$ l( x0 H
    changeColumns = fpopul < fbestpos;, M! ^7 A' i8 |8 m: G( h, c
    fbestpos = fbestpos.*( 1-changeColumns) + fpopul.*changeColumns;' P% f2 a* c5 I1 p
    bestpos(:, find(changeColumns)) = popul(:, find(changeColumns));5 r  f1 V5 P; t, r& S1 N, c" A! D
    % Updating index g' N: \8 L' U4 y8 |: _5 m9 g
    [fbestpart, g] = min(fbestpos);
1 Q+ G4 Y7 r# D$ @0 @$ m; }    currentTime = etime(clock,startTime);
7 [1 l2 w( n& e6 S    % Checking stopping criterion
: Y8 C: E( M5 t3 O( |    if abs(fbestpart-GM) <= ErrGoal
8 n1 C% t' v9 J7 q        success = 1;& o8 ~* L* o6 N8 g5 V
    else
, F6 X( F4 x2 _$ T        lastbpf = fbestpart;' W: _9 _( T0 ]/ u
    end
& d3 D$ _0 |7 S5 M6 H6 p* d
6 f4 }7 {% P" H  L" D, y3 _* `8 wend
+ H! @/ ^) I. Z# |' @
% C. `* K8 v( x# u( c! h. R% Output arguments3 X/ i% ~8 N; J. ^1 Q. ]& y
xmin = popul(:,g);
' u: i/ m$ l' T  M% |/ |fxmin = fbestpos(g);
! w& p7 n' a: S! S5 E  }& E6 R( T
+ p, q* T. @% Xfprintf(^ The best vector is : \n^);3 o, z7 a' H9 d3 a( u
fprintf(^---  %g  ^,xmin);1 U" D( z& T% f) j2 W- b; J5 G
fprintf(^\n^);, ~! H1 H) v1 a6 H9 E5 \3 U  ^" d1 v
%==========================================
# r/ V" G. ?" G  z* K5 P- W" g0 U. cfunction DeJong=DeJong(x)- q0 z6 ^( \7 p& h% Z  S3 ~
DeJong = sum(x.^2);
zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
316855894 实名认证       

6

主题

4

听众

257

积分

升级  78.5%

  • TA的每日心情

    2011-10-24 15:44
  • 签到天数: 23 天

    [LV.4]偶尔看看III

    群组Matlab讨论组

    回复

    使用道具 举报

    0

    主题

    5

    听众

    754

    积分

    升级  38.5%

  • TA的每日心情
    奋斗
    2013-10-29 14:58
  • 签到天数: 18 天

    [LV.4]偶尔看看III

    自我介绍
    酷爱数学
    回复

    使用道具 举报

    0

    主题

    5

    听众

    754

    积分

    升级  38.5%

  • TA的每日心情
    奋斗
    2013-10-29 14:58
  • 签到天数: 18 天

    [LV.4]偶尔看看III

    自我介绍
    酷爱数学
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-25 03:12 , Processed in 0.723753 second(s), 66 queries .

    回顶部