QQ登录

只需要一步,快速开始

 注册地址  找回密码

tag 标签: 解决问题

相关日志

分享 建模奥秘!!!
书呆子 2011-8-31 13:30
成为一个数学建模“高手”的八大奥秘 马壮 世界上并没有成为“高手”的捷径,但一些基本原则是可以遵循的。 1、扎实的基础 这里所谓的基础并不是单独指的数学的基础,而是指的一些基础的知识也许就是一些常识,包括数学、物理、化学、生物、地理等方面。当然这些知识并不一定都是课堂上学到的,有些来自于生活。建模也许人人都会,但是不是人人都能建立出优秀的模型,当你发现你对一些现实生活中的小问题都没有思路的时候,不是你没有数学的天赋,而是你缺少对于生活中知识的积累。不要一开始就去问学微积分有什么用, 你要做的就是先把它学了,就算是记下来了也行,这样你就不会在遇到类似“用最少的钱办最多的事”这样最常见的问题时感到无从下手。因此我们要做的就是尽可能多的涉猎知识,不要仅仅拘泥于自己的专业。 2、丰富的想像力   不要拘泥于固定的思维方式,遇到问题的时候要多想几种解决问题的方案,试试别人从没想过的方法。不要一拿到问题就首先将问题分类,好多人愿意一上来就先将问题分类,例如分为优化问题,组合问题,方程问题等等。然后用与该分类相关的一些方法去解决问题。现实的问题很多都是非常复杂的,单纯的分类有时候是没有任何意义的。这样做不但局限了你的思想,而且会使你变得更加固执。丰富的想像力会把你和问题拉得更近,开阔的思维可以让你看到问题的各个方面。当然丰富的想像力是建立在丰富的知识基础之上的。 3、最简单的是最好的   这也许是所有科学都遵循的一条准则,复杂的质能转换原理在爱因斯坦眼里不过是一个简单得不能再简单的公式:E=mc2。简单的方法更容易被人理解,更容易实现,也更容易维护。遇到问题时要优先考虑最简单的方案,只有简单方案不能满足要求时再考虑复杂的方案。当然即使要应用复杂的方案,也要采用循序渐进的思想,逐步地改进前一个方案,不要一开始就尝试非常复杂的方案。 4、不钻牛角尖   当你遇到障碍的时候,不妨暂时远离问题,看看窗外的风景,听听轻音乐,和朋友聊聊天,或者可以看几本小说。当我遇到难题的时候我通常会去找朋友聊天,朋友的一些善意的小建议甚至是鼓励都会使我的大脑得到充分的休息。当重新开始工作的时候,我会发现那些难题现在竟然可以迎刃而解了。 5、对答案的渴求   人类自然科学的发展史就是一个渴求得到答案的过程,即使只能知道答案的一小部分也值得我们去付出。只要你坚定信念,一定要找到问题的答案,你才会付出精力去探索,即使最后没有得到答案,在过程中你也会学到很多东西。 6、多与别人交流   三人行必有我师,也许在一次和别人不经意的谈话中,就可以迸出灵感的火花。多上上网,看看别人对同一问题的看法,会给你很大的启发。当然不要把和别人交流的目的就看作是去获取问题的答案,即使是学习方法的交流对你来说都是有益的。 7、良好的编程素养   随着科学的不断进步,越来越多的学科已经和计算机密不可分了,作为解决现实问题的主要手段之一的数学建模当然是离不开计算机了。有的人可能会认为搞数学建模的只要可以编写一些简单的程序就可以了,我对这一点持否定态度。对于编程来说,不管程序量的大小都是一个工程,既然是工程就要按照质量标准来做,不是有ISO9000质量标准吗?那个标准对于编程同样适用。只有编程的质量得到了保证,计算机这个工具才能真正成为建模的有利武器。 8、韧性和毅力   这也许是“高手”和一般人最大的区别。高手们并不是天才,他们是在无数个日日夜夜中磨炼出来的。成功能给我们带来无比的喜悦,但过程却是无比的枯燥乏味。你不妨做个测试,坚持每天去图书馆看1个小时的和数学建模相关的书或资料,坚持半年,如果能够不间断地完成这一工作,你就可以满足这一条。
512 次阅读|0 个评论
分享 数学建模的十大算法
月下清风 2011-8-18 10:35
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时 可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而 处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优 化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论 的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常 用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决 一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎 重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应 用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言 作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离 散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法 比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图 片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)
328 次阅读|0 个评论
分享 数模
明月清泉 2011-8-10 23:45
1 、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2 、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用 Matlab 作为工具) 3 、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用 Lindo 、 Lingo 软件实现) 4 、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5 、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6 、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7 、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8 、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9 、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10 、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用 Matlab 进行处理)
个人分类: 数模|225 次阅读|0 个评论
分享 数学建模“高手”的八大奥秘
liubao20100816 2011-5-22 15:33
世界上并没有成为“高手”的捷径,但一些基本原则是可以遵循的。 1、扎实的基础 这里所谓的基础并不是单独指的数学的基础,而是指的一些基础的知识也许就是一些常识,包括数学、物理、化学、生物、地理等方面。当然这些知识并不一定都是课堂上学到的,有些来自于生活。建模也许人人都会,但是不是人人都能建立出优秀的模型,当你发现你对一些现实生活中的小问题都没有思路的时候,不是你没有数学的天赋,而是你缺少对于生活中知识的积累。不要一开始就去问学微积分有什么用, 你要做的就是先把它学了,就算是记下来了也行,这样你就不会在遇到类似“用最少的钱办最多的事”这样最常见的问题时感到无从下手。因此我们要做的就是尽可能多的涉猎知识,不要仅仅拘泥于自己的专业。 2、丰富的想像力   不要拘泥于固定的思维方式,遇到问题的时候要多想几种解决问题的方案,试试别人从没想过的方法。不要一拿到问题就首先将问题分类,好多人愿意一上来就先将问题分类,例如分为优化问题,组合问题,方程问题等等。然后用与该分类相关的一些方法去解决问题。现实的问题很多都是非常复杂的,单纯的分类有时候是没有任何意义的。这样做不但局限了你的思想,而且会使你变得更加固执。丰富的想像力会把你和问题拉得更近,开阔的思维可以让你看到问题的各个方面。当然丰富的想像力是建立在丰富的知识基础之上的。 3、最简单的是最好的   这也许是所有科学都遵循的一条准则,复杂的质能转换原理在爱因斯坦眼里不过是一个简单得不能再简单的公式:E=mc2。简单的方法更容易被人理解,更容易实现,也更容易维护。遇到问题时要优先考虑最简单的方案,只有简单方案不能满足要求时再考虑复杂的方案。当然即使要应用复杂的方案,也要采用循序渐进的思想,逐步地改进前一个方案,不要一开始就尝试非常复杂的方案。 4、不钻牛角尖   当你遇到障碍的时候,不妨暂时远离问题,看看窗外的风景,听听轻音乐,和朋友聊聊天,或者可以看几本小说。当我遇到难题的时候我通常会去找朋友聊天,朋友的一些善意的小建议甚至是鼓励都会使我的大脑得到充分的休息。当重新开始工作的时候,我会发现那些难题现在竟然可以迎刃而解了。 5、对答案的渴求   人类自然科学的发展史就是一个渴求得到答案的过程,即使只能知道答案的一小部分也值得我们去付出。只要你坚定信念,一定要找到问题的答案,你才会付出精力去探索,即使最后没有得到答案,在过程中你也会学到很多东西。 6、多与别人交流   三人行必有我师,也许在一次和别人不经意的谈话中,就可以迸出灵感的火花。多上上网,看看别人对同一问题的看法,会给你很大的启发。当然不要把和别人交流的目的就看作是去获取问题的答案,即使是学习方法的交流对你来说都是有益的。 7、良好的编程素养   随着科学的不断进步,越来越多的学科已经和计算机密不可分了,作为解决现实问题的主要手段之一的数学建模当然是离不开计算机了。有的人可能会认为搞数学建模的只要可以编写一些简单的程序就可以了,我对这一点持否定态度。对于编程来说,不管程序量的大小都是一个工程,既然是工程就要按照质量标准来做,不是有ISO9000质量标准吗?那个标准对于编程同样适用。只有编程的质量得到了保证,计算机这个工具才能真正成为建模的有利武器。 8、韧性和毅力   这也许是“高手”和一般人最大的区别。高手们并不是天才,他们是在无数个日日夜夜中磨炼出来的。成功能给我们带来无比的喜悦,但过程却是无比的枯燥乏味。你不妨做个测试,坚持每天去图书馆看1个小时的和数学建模相关的书或资料,坚持半年,如果能够不间断地完成这一工作,你就可以满足这一条。
0 个评论
qq
收缩
  • 电话咨询

  • 04714969085

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-8-28 01:50 , Processed in 0.714092 second(s), 27 queries .

回顶部