QQ登录

只需要一步,快速开始

 注册地址  找回密码

tag 标签: 统计

相关帖子

版块 作者 回复/查看 最后发表
求沈阳世园会的人数统计 数模奋斗日记 忘情的水 2011-8-16 3 3495 pcyaoqiang 2013-7-2 21:21
《MATLAB统计分析与应用:40个案例分析》程序与数据 attachment 数值分析算法 星陨 2011-8-21 170 53177 826284973 2018-8-31 10:09
《中国人口统计年鉴》部分 attachment 统计年鉴 追忆似水年华 2011-8-24 12 18745 Myseven 2015-2-6 14:25
投票 2011GMCM选题分布情况统计 往届竞赛参考文献 ccsmars 2011-9-24 18 6743 简单の低调 2011-11-19 20:48
2011年GMCM选题分布(基于提交论文统计) 全国研究生数学建模竞赛(GMCM) ccsmars 2011-9-30 0 4431 ccsmars 2011-9-30 16:05
投票 参加GMCM次数统计 全国研究生数学建模竞赛(GMCM) ccsmars 2011-10-14 16 8096 Rocca1231 2012-11-14 22:00
概率统计新版 attachment 概率论与数理统计 小石头stone 2011-10-14 7 3958 空木葬花 2014-3-18 16:49
关于参加2011年全国大学生统计建模大赛答辩赛及颁奖典礼的通知 attachment 全国大学生统计建模竞赛(SUCM) 王者风云 2011-10-18 7 9672 hbdkfk2 2012-8-30 12:35
第二届生物统计国际研讨会-征文及参会通知- 全国研究生数学建模竞赛(GMCM) xiaohongwei 2011-10-24 0 6635 xiaohongwei 2011-10-24 16:44
2011年第一期数学中国SAS职业统计分析实训开班通知 attach_img MADIO数模培训 厚积薄发 2011-11-22 36 17153 流雨星月 2014-8-31 09:43
关于数据统计和相关随机数选取的问题 attach_img SPSS论坛 redkylin 2011-12-2 1 3381 大鲵2003 2011-12-13 17:11
一个关于数据统计和相似随机数生成的问题 attach_img 概率论与数理统计 redkylin 2011-12-2 3 3593 gigiliao 2011-12-7 23:17
第五讲:描述性统计量 attachment Forum 厚积薄发 2011-12-4 0 32 厚积薄发 2011-12-4 18:37
对我国统计教育的思考与建议 SAS论坛 mashimaroq 2011-12-5 6 3947 璕蜜love~ 2012-11-26 10:33
第五讲 描述性统计量 attachment Forum 厚积薄发 2011-12-5 0 28 厚积薄发 2011-12-5 16:58
第六讲:描述性统计量(二) attachment 第一期sas基础实训课堂 厚积薄发 2011-12-5 0 35 厚积薄发 2011-12-5 18:58
电工杯统计 全国大学生电工数模竞赛(EMCM) Solemn胜威 2011-12-23 0 2294 Solemn胜威 2011-12-23 13:38
SPSS实用统计分析教程&时间序列分析 attachment SPSS论坛 <饺饺> 2011-12-26 21 6120 zqzzzq 2014-5-1 15:52
SPSS实用统计分析 attachment SPSS论坛 <饺饺> 2011-12-26 8 2136 绛红宵寐 2012-7-18 21:09
2012年还有全国大学生统计建模竞赛吗? 全国大学生统计建模竞赛(SUCM) 孤寂冷逍遥 2012-1-3 39 16528 MichaeLonger 2014-6-19 16:45

相关日志

分享 通过G*Power软件计算Cohen`s D[转]
雪域风耀 2016-9-18 11:24
quote from 涉及到t检验显著的统计分析,都要求提供Cohen's D,下面通过G*Power软件进行相关的计算 下载软件G*Power,打开看到如下界面 2 选择独立样本T检验 3 点击Determine,然后在右侧分别输入两组数据的平均值(Mean)和标准差(S.D.) 4 点击Calculate,就能计算出Cohen's D值
263 次阅读|0 个评论
分享 统计类常用
暗夜№☆修罗 2013-11-16 12:20
微分方程建模 微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。把形形色色的实际问题化成微分方程的定解问题,大体上可以按以下几步: 1. 根据实际要求确定要研究的量 ( 自变量、未知函数、必要的参数等 ) 并确定坐标系。 2. 找出这些量所满足的基本规律 ( 物理的、几何的、化学的或生物学的等等 ) 。 3. 运用这些规律列出方程和定解条件。 列方程常见的方法有: ( i )按规律直接列方程 在数学、力学、物理、化学等学科中许多自然现象所满足的规律已为人们所熟悉,并直接由微分方程所描述。如牛顿第二定律、放射性物质的放射性规律等。我们常利用这些规律对某些实际问题列出微分方程。 ( ii )微元分析法与任意区域上取积分的方法 自然界中也有许多现象所满足的规律是通过变量的微元之间的关系式来表达的。对于这类问题,我们不能直接列出自变量和未知函数及其变化率之间的关系式,而是通过微元分析法,利用已知的规律建立一些变量(自变量与未知函数)的微元之间的关系式,然后再通过取极限的方法得到微分方程,或等价地通过任意区域上取积分的方法来建立微分方程。 稳定状态模型 虽然动态过程的变化规律一般要用微分方程建立的动态模型来描述,但是对于某些实际问题,建模的主要目的并不是要寻求动态过程每个瞬时的性态,而是研究某种意义下稳定状态的特征,特别是当时间充分长以后动态过程的变化趋势。譬如在什么情况下描述过程的变量会越来越接近某些确定的数值,在什么情况下又会越来越远离这些数值而导致过程不稳定。为了分析这种稳定与不稳定的规律常常不需要求解微分方程,而可以利用微分方程稳定性理论,直接研究平衡状态的稳定性就行了。 常微分方程的解法 建立微分方程只是解决问题的第一步,通常需要求出方程的解来说明实际现象,并加以检验。如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,只有线性常系数微分方程,并且自由项是某些特殊类型的函数时,才可以肯定得到这样的解,而绝大多数变系数方程、非线性方程都是所谓“解不出来”的,即使看起来非常简单的方程,于是对于用微分方程解决实际问题来说,数值解法就是一个十分重要的手段。 动态优化模型 动态过程的另一类问题是所谓的动态优化问题,这类问题一般要归结为求最优控制函数使某个泛函达到极值。当控制函数可以事先确定为某种特殊的函数形式时,问题又简化为求普通函数的极值。求解泛函极值问题的方法主要有变分法和最优控制理论方法。 § 1 变分法简介 变分法是研究泛函极值问题的一种经典数学方法,有着广泛的应用。下面先介绍变分法的基本概念和基本结果,然后介绍动态系统最优控制问题求解的必要条件和最大值。 偏微分方程的数值解 自然科学与工程技术中种种运动发展过程与平衡现象各自遵守一定的规律。这些规律的定量表述一般地呈现为关于含有未知函数及其导数的方程。我们将只含有未知多元函数及其偏导数的方程,称之为偏微分方程。 方程中出现的未知函数偏导数的最高阶数称为偏微分方程的阶。如果方程中对于未知函数和它的所有偏导数都是线性的,这样的方程称为线性偏微分方程,否则称它为非线性偏微分方程。初始条件和边界条件称为定解条件,未附加定解条件的偏微分方程称为泛定方程。对于一个具体的问题,定解条件与泛定方程总是同时提出。定解条件与泛定方程作为一个整体,称为定解问题。 线性规划 § 1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划 (LinearProgramming 简记 LP) 则是数学规划的一个重要分支。自从 1947 年 G.B.Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 整数规划 §1 概论 1.1 定义 规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法,往往只适用于整数线性规划。目前还没有一种方法能有效地求解一切整数规划。 1.2 整数规划的分类 如不加特殊说明,一般指整数线性规划。对于整数线性规划模型大致可分为两类: 1 o 变量全限制为整数时,称纯(完全)整数规划。 2 o 变量部分限制为整数的,称混合整数规划。 1.2 整数规划特点 ( i ) 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况: ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。 ②整数规划无可行解。 非线性规划 § 1 非线性规划 1.1 非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。 动态规划 § 1 引言 1.1 动态规划的发展及研究内容 动态规划( dynamicprogramming )是运筹学的一个分支,是求解决策过程( decisionprocess )最优化的数学方法。 20 世纪 50 年代初 R.E.Bellman 等人在研究多阶段决策过 程 (multistepdecisionprocess) 的优化问题时,提出了著名的最优性原理( principleofoptimality ),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。 1957 年出版了他的名著《 DynamicProgramming 》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 目标规划 § 1 引言 1 .线性规划的局限性 只能解决一组线性约束条件下,某一目标只能是一个目标的最大或最小值的问题。 2 .实际决策中,衡量方案优劣考虑多个目标这些目标中,有主要的,也有次要的;有最大值的,也有最小值的;有定量的,也有定性的;有相互补充的,也有相互对立的, LP 则无能为力。 3 .目标规划( GoalProgramming ) 美国经济学家查恩斯( A.Charnes )和库柏( W.W.Cooper )在 1961 年出版的《管理模型及线性规划的工业应用》一书中,首先提出的。 4 .求解思路 ( 1 )加权系数法 为每一目标赋一个权系数,把多目标模型转化成单一目标的模型。但困难是要确定合理的权系数,以反映不同目标之间的重要程度。 ( 2 )优先等级法 将各目标按其重要程度不同的优先等级,转化为单目标模型。 ( 3 )有效解法 寻求能够照顾到各个目标,并使决策者感到满意的解。由决策者来确定选取哪一个解,即得到一个满意解。但有效解的数目太多而难以将其一一求出。 现代优化算法 现代优化算法是 80 年代初兴起的启发式算法。这些算法包括禁忌搜索( tabusearch ),模拟退火( simulatedannealing ),遗传算法( geneticalgorithms ),人工神经网络( neuralnetworks )。它们主要用于解决大量的实际应用问题。目前,这些算法在理论和实际应用方面得到了较大的发展。无论这些算法是怎样产生的,它们有一个共同的目标-求 NP-hard 组合优化问题的全局最优解。虽然有这些目标,但 NP-hard 理论限制它们只能以启发式的算法去求解实际问题。启发式算法包含的算法很多,例如解决复杂优化问题的蚁群算法( AntColony Algorithms )。有些启发式算法是根据实际问题而产生的,如解空间分解、解空间的限制等;另一类算法是集成算法,这些算法是诸多启发式算法的合成。现代优化算法解决组合优化问题,如 TSP ( TravelingSalesmanProblem )问题, QAP ( QuadraticAssignmentProblem )问题, JSP ( Job-shopSchedulingProblem )问题等效果很好。 层次分析法 层次分析法( AnalyticHierarchyProcess ,简称 AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家 T.L.Saaty 教授于上世纪 70 年代初期提出的一种简便、灵活而又实用的多准则决策方法。 § 1 层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。运用层次分析法建模,大体上可按下面四个步骤进行: ( i )建立递阶层次结构模型; ( ii )构造出各层次中的所有判断矩阵; ( iii )层次单排序及一致性检验; ( iv )层次总排序及一致性检验。 插值与拟合 插值:求过已知有限个数据点的近似函数。 拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。 插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。而面对一个实际问题,究竟应该用插值还是拟合,有时容易确定,有时则并不明显。 数据的统计描述和分析 数理统计研究的对象是受随机因素影响的数据,以下数理统计就简称统计,统计是以概率论为基础的一门应用学科。 数据样本少则几个,多则成千上万,人们希望能用少数几个包含其最多相关信息的数值来体现数据样本总体的规律。描述性统计就是搜集、整理、加工和分析统计数据,使之系统化、条理化,以显示出数据资料的趋势、特征和数量关系。它是统计推断的基础,实用性较强,在统计工作中经常使用。面对一批数据如何进行描述与分析,需要掌握参数估计和假设检验这两个数理统计的最基本方法。 我们将用 Matlab 的统计工具箱 (StatisticsToolbox) 来实现数据的统计描述和分析 方差分析 我们已经作过两个总体均值的假设检验,如两台机床生产的零件尺寸是否相等,病人和正常人的某个生理指标是否一样。如果把这类问题推广一下,要检验两个以上总体的均值彼此是否相等,仍然用以前介绍的方法是很难做到的。而你在实际生产和生活中可以举出许多这样的问题:从用几种不同工艺制成的灯泡中,各抽取了若干个测量其寿命,要推断这几种工艺制成的灯泡寿命是否有显著差异;用几种化肥和几个小麦品种在若干块试验田里种植小麦,要推断不同的化肥和品种对产量有无显著影响。可以看到,为了使生产过程稳定,达到优质、高产,需要对影响产品质量的因素进行分析,找出有显著影响的那些因素,除了从机理方面进行研究外,常常要作许多试验,对结果作分析、比较,寻求规律。用数理统计分析试验结果、鉴别各因素对结果影响程度的方法称为方差分析( AnalysisOfVariance ),记作 ANOVA 。 人们关心的试验结果称为指标,试验中需要考察、可以控制的条件称为因素或因子,因素所处的状态称为水平。上面提到的灯泡寿命问题是单因素试验,小麦产量问题是双因素试验。处理这些试验结果的统计方法就称为单因素方差分析和双因素方差分析。 回归分析 前面我们讲过曲线拟合问题。曲线拟合问题的特点是,根据得到的若干有关变量的一组数据,寻找因变量与(一个或几个)自变量之间的一个函数,使这个函数对那组数据拟合得最好。通常,函数的形式可以由经验、先验知识或对数据的直观观察决定,要作的工作是由数据用最小二乘法计算函数中的待定系数。从计算的角度看,问题似乎已经完全解决了,还有进一步研究的必要吗 ? 从数理统计的观点看,这里涉及的都是随机变量,我们根据一个样本计算出的那些系数,只是它们的一个(点)估计,应该对它们作区间估计或假设检验,如果置信区间太大,甚至包含了零点,那么系数的估计值是没有多大意义的。另外也可以用方差分析 方法对模型的误差进行分析,对拟合的优劣给出评价。简单地说,回归分析就是对拟合问题作的统计分析。 具体地说,回归分析在一组数据的基础上研究这样几个问题: ( i )建立因变量 y 与自变量 x , x ,, x m 之间的回归模型(经验公式); ( ii )对回归模型的可信度进行检验; ( iii )判断每个自变量 x ( i 1,2,, m ) i = L 对 y 的影响是否显著; ( iv )诊断回归模型是否适合这组数据; ( v )利用回归模型对 y 进行预报或控制。 -415- 灰色系统理论及其应用 客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。 § 1 灰色系统概论 客观世界在不断发展变化的同时,往往通过事物之间及因素之间相互制约、相互联系而构成一个整体,我们称之为系统。按事物内涵的不同,人们已建立了工程技术、社会系统、经济系统等。人们试图对各种系统所外露出的一些特征进行分析,从而弄清楚系统内部的运行机理。从信息的完备性与模型的构建上看,工程技术等系统具有较充足的信息量,其发展变化规律明显,定量描述较方便,结构与参数较具体,人们称之为白色系统;对另一类系统诸如社会系统、农业系统、生态系统等,人们无法建立客观的物理原型,其作用原理亦不明确,内部因素难以辨识或之间关系隐蔽,人们很难准确了解这类系统的行为特征,因此对其定量描述难度较大,带来建立模型的困难。这类系统内部特性部分已知的系统称之为灰色系统。一个系统的内部特性全部未知,则称之为黑色系统。 区别白色系统与灰色系统的重要标志是系统内各因素之间是否具有确定的关系。运动学中物体运动的速度、加速度与其所受到的外力有关,其关系可用牛顿定律以明确的定量来阐明,因此,物体的运动便是一个白色系统。当然,白、灰、黑是相对于一定的认识层次而言的,因而具有相对性。某人有一天去他朋友家做客,发现当外面的汽车开过来时,他朋友家的狗就躲到屋角里瑟瑟发抖。他对此莫名其妙。但对他朋友来讲,狗的这种行为是可以理解的,因为他知道,狗在前不久曾被汽车撞伤过。显然,同样对于“狗的惧怕行为”,客人因不知内情而面临一个黑箱,而主人则面临一个灰箱。作为实际问题,灰色系统在大千世界中是大量存在的,绝对的白色或黑色系统是很少的。随着人类认识的进步及对掌握现实世界的要求的升级,人们对社会、经济等问题的研究往往已不满足于定性分析。尽管当代科技日新月异,发展迅速,但人们对自然界的认识仍然是肤浅的。粮食作物的生产是一个实际的关系到人们吃饭的大问题,但同时,它又是一个抽象的灰色系统。肥料、种子、农药、气象、土壤、劳力、水利、耕作及政策等皆是影响生产的因素,但又难以确定影响生产的确定因素,更难确定这些因素与粮食产量的定量关系。人们只能在一定的假设条件(往往是一些经验及常识)下按照某种逻辑推理演绎而得到模型。这种模型并非是粮食作物生产问题在理论认识上的“翻版”,而只能看作是人们在认识上对实际问题的一种“反映”或“逼近”。社会、经济、农业以及生态系统一般都会有不可忽略的“噪声”(即随即干扰)。现有的研究经常被“噪声”污染。受随机干扰侵蚀的系统理论主要立足于概率统计。通过统计规律、概率分布对事物的发展进行预测,对事物的处置进行决策。现有的系统分析的量化方法,大都是数理统计法如回归分析、方差分析、主成分分析等,回归分析是应用最广泛的一种办法。但回归分析要求大样本,只有通过大量的数据才能得到量化的规律,这对很多无法得到或一时缺乏数据的实际问题的解决带来困难。回归分析还要求样本有较好的分布规律,而很多实际情形并非如此。例如,我国建国以来经济方面有几次大起大落,难以满足样本有较规律的分布要求。因此,有了大量的数据也不一定能得到统计规律,甚至即使得到了统计规律,也并非任何情况都可以分析。另外,回归分析不能分析因素间动态的关联程度,即使是静态,其精度也不高,且常常出现反常现象。灰色系统理论提出了一种新的分析方法—关联度分析方法,即根据因素之间发展态势的相似或相异程度来衡量因素间关联的程度,它揭示了事物动态关联的特征与程度。由于以发展态势为立足点,因此对样本量的多少没有过分的要求,也不需要典型的分布规律,计算量少到甚至可用手算,且不致出现关联度的量化结果与定性分析不一致 的情况。这种方法已应用到农业经济、水利、宏观经济等各方面,都取得了较好的效果。灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在某些研究领域中,人们却常常希望使用微分方程模型。事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。 灰色系统理论首先基于对客观系统的新的认识。尽管某些系统的信息不够充分,但作为系统必然是有特定功能和有序的,只是其内在规律并未充分外露。有些随机量、无规则的干扰成分以及杂乱无章的数据列,从灰色系统的观点看,并不认为是不可捉摸的。相反地,灰色系统理论将随机量看作是在一定范围内变化的灰色量,按适当的办法将原始数据进行处理,将灰色数变换为生成数,从生成数进而得到规律性较强的生成函数。例如,某些系统的数据经处理后呈现出指数规律,这是由于大多数系统都是广义的能量系统,而指数规律是能量变化的一种规律。灰色系统理论的量化基础是生成数,从而突破了概率统计的局限性,使其结果不再是过去依据大量数据得到的经验性的统计规律,而是现实性的生成律。这种使灰色系统变得尽量清晰明了的过程被称为白化。目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多变的农业系统中,并取得了可喜的成就。灰色系统理论有可能对社会、经济等抽象系统进行分析、建模、预测、决策和控制,它有可能成为人们认识客观系统改造客观系统的一个新型的理论工具。 § 2 关联分析 大千世界里的客观事物往往现象复杂,因素繁多。我们往往需要对系统进行因素分析,这些因素中哪些对系统来讲是主要的,哪些是次要的,哪些需要发展,哪些需要抑制,哪些是潜在的,哪些是明显的。一般来讲,这些都是我们极为关心的问题。事实上,因素间关联性如何、关联程度如何量化等问题是系统分析的关键和起点。因素分析的基本方法过去主要采取回归分析等办法。正如前一节指出的,回归分析的办法有很多欠缺,如要求大量数据、计算量大及可能出现反常情况等。为克服以上弊病,本节采用关联度分析的办法来做系统分析。作为一个发展变化的系统,关联分析实际上是动态过程发展态势的量化比较分析。所谓发展态势比较,也就是系统各时期有关统计数据的几何关系的比较。 多元分析 多元分析( multivariateanalyses )是多变量的统计分析方法,是数理统计中应用广泛的一个重要分支,其内容庞杂,视角独特,方法多样,深受工程技术人员的青睐和广泛使用,并在使用中不断完善和创新。由于变量的相关性,不能简单地把每个变量的结果进行汇总,这是多变量统计分析的基本出发点。 偏最小二乘回归 在实际问题中,经常遇到需要研究两组多重相关变量间的相互依赖关系,并研究用一组变量(常称为自变量或预测变量)去预测另一组变量(常称为因变量或响应变量),除了最小二乘准则下的经典多元线性回归分析( MLR ),提取自变量组主成分的主成分回归分析( PCR )等方法外,还有近年发展起来的偏最小二乘( PLS )回归方法。偏最小二乘回归提供一种多对多线性回归建模的方法,特别当两组变量的个数很多,且都存在多重相关性,而观测数据的数量(样本量)又较少时,用偏最小二乘回归建立的模型具有传统的经典回归分析等方法所没有的优点。偏最小二乘回归分析在建模过程中集中了主成分分析,典型相关分析和线性回归分析方法的特点,因此在分析结果中,除了可以提供一个更为合理的回归模型外,还可以同时完成一些类似于主成分分析和典型相关分析的研究内容,提供更丰富、深入的一些 信息。 判别分析 在生产、科学研究和日常生活中,经常会遇到对某一研究对象属于哪种情况作出判断。例如要根据这两天天气情况判断明天是否会下雨;医生要根据病人的体温、白血球数目及其它症状判断此病人是否会患某种疾病等等。 存贮论 存贮论(或称为库存论)是定量方法和技术最早的领域之一,是研究存贮系统的性质、运行规律以及如何寻找最优存贮策略的一门学科,是运筹学的重要分支。存贮论的数学模型一般分成两类:一类是确定性模型,它不包含任何随机因素,另一类是带有随机因素的随机存贮模型。 时间序列模型 时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列。分析时间序 列的方法构成数据分析的一个重要领域,即时间序列分析。 时间序列根据所研究的依据不同,可有不同的分类。 1 .按所研究的对象的多少分,有一元时间序列和多元时间序列。 2 .按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。 3 .按序列的统计特性分,有平稳时间序列和非平稳时间序列。如果一个时间序列 的概率分布与时间 t 无关,则称该序列为严格的(狭义的)平稳时间序列。如果序列的 一、二阶矩存在,而且对任意时刻 t 满足: ( 1 )均值为常数 ( 2 )协方差为时间间隔 τ 的函数。 则称该序列为宽平稳时间序列,也叫广义平稳时间序列。我们以后所研究的时间序列主 要是宽平稳时间序列。 4 .按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。 -257- 模糊数学模型 § 1 模糊数学的基本概念 1.1 模糊数学简介 1965 年,美国著名计算机与控制专家查德 (L.A.Zadeh) 教授提出了模糊的概念,并在国际期刊《 InformationandControl 》并发表了第一篇用数学方法研究模糊现象的论文“ FuzzySets ” ( 模糊集合 ) ,开创了模糊数学的新领域。模糊是指客观事物差异的中间过渡中的“不分明性”或“亦此亦彼性”。如高个子与矮个子、年轻人与老年人、热水与凉水、环境污染严重与不严重等。在决策中,也有这种模糊的现象,如选举一个好干部,但怎样才算一个好干部?好干部与不好干部之间没有绝对分明和固定不变的界限。这些现象很难用经典的数学来描述。 模糊数学就是用数学方法研究与处理模糊现象的数学。它作为一门崭新的学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。经过短暂的沉默和争议之后,迅猛的发展起来了,而且应用越来越广泛。如今的模糊数学的应用已经遍及理、工、农、医及社会科学的各个领域,充分的表现了它强大的生命力和渗透力。统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定领域扩大到了模糊领域,即从精确现象到模糊现象。实际中,我们处理现实的数学模型可以分成三大类:第一类是确定性数学模型,即模型的背景具有确定性,对象之间具有必然的关系。第二类是随机性的数学模型,即模型的背景具有随机性和偶然性。第三类是模糊性模型,即模型的背景及关系具有模糊性。 神经网络模型 §1 神经网络简介 人工神经网络是在现代神经科学的基础上提出和发展起来的,旨在反映人脑结构及功能的一种抽象数学模型。自 1943 年美国心理学家 W.McCulloch 和数学家 W.Pitts 提出形式神经元的抽象数学模型— MP 模型以来,人工神经网络理论技术经过了 50 多年曲折的发展。特别是 20 世纪 80 年代,人工神经网络的研究取得了重大进展,有关的理论和方法已经发展成一门界于物理学、数学、计算机科学和神经生物学之间的交叉学科。它在模式识别,图像处理,智能控制,组合优化,金融预测与管理,通信,机器人以及专家系统等领域得到广泛的应用,提出了 40 多种神经网络模型,其中比较著名的有感知机, Hopfield 网络, Boltzman 机,自适应共振理论及反向传播网络( BP )等 对策论 § 1 引言 社会及经济的发展带来了人与人之间或团体之间的竞争及矛盾,应用科学的方法来解决这样的问题开始于 17 世纪的科学家,如 C. , Huygens 和 W. , Leibnitz 等。现代对策论起源于 1944 年 J. , VonNeumann 和 O. , Morgenstern 的著作《 TheoryofGamesandEconomicBehavior 》。 对策论亦称竞赛论或博弈论。是研究具有斗争或竞争性质现象的数学理论和方法。一般认为,它既是现代数学的一个新分支,也是运筹学中的一个重要学科。对策论发展的历史并不长,但由于它所研究的现象与人们的政治、经济、军事活动乃至一般的日常生活等有着密切的联系,并且处理问题的方法又有明显特色。所以日益引起广泛的注意。在日常生活中,经常看到一些具有相互之间斗争或竞争性质的行为。具有竞争或对抗性质的行为称为对策行为。在这类行为中。参加斗争或竞争的各方各自具有不同的目标和利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。对策论就是研究对策行为中斗争各方是否存在着最合理的行动方案,以及如何找到这个合理的行动方案的数学理论和方法。 § 2 对策问题 对策问题的特征是参与者为利益相互冲突的各方,其结局不取决于其中任意一方的努力而是各方所采取的策略的综合结果。 排队论模型 排队论起源于 1909 年丹麦电话工程师 A.K .爱尔朗的工作,他对电话通话拥挤问题进行了研究。 1917 年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理论的几个问题的解决”。排队论已广泛应用于解决军事、运输、维修、生产、服务、库存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。此时要求服务的数量超过服务机构(服务台、服务员等)的容量。也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。由于顾客到达和服务时间的随机性。可以说排队现象几乎是不可避免的。排队论( QueuingTheory )也称随机服务系统理论,就是为解决上述问题而发展的一门学科。它研究的内容有下列三部分: ( i )性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待 时间分布和忙期分布等,包括了瞬态和稳态两种情形。 ( ii )最优化问题,又分静态最优和动态最优,前者指最优设计。后者指现有排队 系统的最优运营。 ( iii )排队系统的统计推断,即判断一个给定的排队系统符合于哪种模型,以便 根据排队理论进行分析研究。 图与网络模型及方法 § 1 概论 图论起源于 18 世纪。第一篇图论论文是瑞士数学家欧拉于 1736 年发表的“哥尼斯堡的七座桥”。 1847 年,克希霍夫为了给出电网络方程而引进了“树”的概念。 1857 年,凯莱在计数烷 n 2 n + 2 CH 的同分异构物时,也发现了“树”。哈密尔顿于 1859 年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈、近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、运筹学,生物遗传学、心理学、经济学、社会学等学科中。 图论中所谓的“图”是指某类具体事物和这些事物之间的联系。如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了 一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来,问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。 图 1 哥尼斯堡七桥问题 当然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。欧拉为了解决这个问题,采用了建立数学模型的方法。他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。问题成为从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。图与网络是运筹学( OperationsResearch )中的一个经典和重要的分支,所研究的 问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都是图与网络的基本问题。
943 次阅读|0 个评论
分享 数学建模与计量经济学、统计建模的关系
zj-jscsbao 2011-10-26 09:08
数学建模,一般指运用所学的数学知识,抽象实际问题,建模各种模型。运用到的数学知识包括,初等数学、高等数学(微积分、常微分方程)、线性代数、概率论、数理统计、数学分析、几何、代数、运筹学、控制论、多元统计、随机过程等数学与应用数学所学的各个分支。 计量经济学的基础是概率论与数理统计,在此基础上强调在经济领域做数量分析的运用。理论计量偏重数学,核心是大数定律与中心极限定理;应用计量强调运用,对经济问题建模分析。 统计建模用统计的方法,比如多元回归、因子分析、聚类分析等。在经济领域也有运用,但没有计量那么普遍。
0 个评论
qq
收缩
  • 电话咨询

  • 04714969085

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-6-16 00:46 , Processed in 0.286419 second(s), 27 queries .

回顶部