- 在线时间
- 0 小时
- 最后登录
- 2011-10-7
- 注册时间
- 2010-9-1
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 31 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 13
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 11
- 主题
- 4
- 精华
- 0
- 分享
- 0
- 好友
- 1
升级   8.42% 该用户从未签到
 |
P=[0.1093,0.1110,0.1127,0.1141,0.1154,0.1164,0.1171,0.1175,0.1178,0.1179,0.1179,0.1179,0.1179,0.1180,0.1182];
# V0 ? ^0 ^- P! z( k0 uT=[0.1110,0.1127,0.1141,0.1154,0.1164,0.1171,0.1175,0.1178,0.1179,0.1179,0.1179,0.1179,0.1180,0.1182,0.1185];9 |6 j% g3 x' i7 o+ \% T: J2 M
% 创建一个新的前向神经网络
) g1 Y; |6 p4 ~5 p6 x' ]net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')- e5 X* W6 @& j7 _4 u! C. a4 V8 |
% 当前输入层权值和阈值. y# ^. _. Y( z b' g0 q" r0 r
inputWeights=net_1.IW{1,1}
2 m$ F2 w0 n& S; Z- v hinputbias=net_1.b{1}
- [6 z+ i5 F1 e4 ^; g7 E! g% 当前网络层权值和阈值' {/ h1 h4 d; P( w' @. q
layerWeights=net_1.LW{2,1}2 ~* Z% G4 @- r( s3 B6 t
layerbias=net_1.b{2}
# g3 k: Z+ J/ }% h2 ]: ]$ j% 设置训练参数
7 y+ m, }, f0 u6 b% H# Jnet_1.trainParam.show = 50;
/ d8 i) a1 G9 n1 ?/ r8 lnet_1.trainParam.lr = 0.05;
& z( J* F4 ^1 Y% Snet_1.trainParam.mc = 0.9;
, S+ M) f' r5 R: y3 _3 L6 e$ Dnet_1.trainParam.epochs = 10000;
* n' v' C& g. X. znet_1.trainParam.goal = 1e-3; p6 |7 _8 ~3 A8 |& A& _2 C* I
% 调用 TRAINGDM 算法训练 BP 网络
4 t& `% N: u o[net_1,tr]=train(net_1,P,T);
6 ^9 l4 D+ ` r6 a/ W/ F% 对 BP 网络进行仿真' b$ X5 l* S/ B# z3 q
A = sim(net_1,P);# ^! f' u% A9 M- C
% 计算仿真误差 8 f( Q# O- @, D) l4 S
E = T - A;% i0 w8 W3 H: n% y+ }0 E- n
MSE=mse(E)
0 F: l5 R6 e$ p2 |) ?x=[0.1110,0.1127,0.1141,0.1154,0.1164,0.1171,0.1175,0.1178,0.1179,0.1179,0.1179,0.1179,0.1180,0.1182,0.1185]';%测试 j$ q: {5 y/ v1 P* ?4 v
sim(net_1,x) 7 n$ [8 y1 t& V }
这段程序是根据14年的数据,来预测下一年的,怎么算不出来啊 。) ?/ }2 X! w( t5 @9 G
|
zan
|