QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3063|回复: 0
打印 上一主题 下一主题

关于“歌德**猜想”研究的几点缺憾(原创)----续1

[复制链接]
字体大小: 正常 放大
sdqdzhxg        

8

主题

4

听众

165

积分

升级  32.5%

  • TA的每日心情
    难过
    2015-1-23 07:21
  • 签到天数: 7 天

    [LV.3]偶尔看看II

    跳转到指定楼层
    1#
    发表于 2011-1-25 16:06 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 sdqdzhxg 于 2011-1-26 16:41 编辑 % ]* B) D5 f0 p" d" y- l' x

    , ~3 q/ Y! j9 h
    关于歌德**猜想研究的几点缺憾
    0 [2 t1 O! @2 [  _' T
    (原创)
    8 \3 Z8 @/ d2 W

    6 V7 L# C( K& @# z/ g! M" X歌德**猜想这道著名的数学难题曾引起世界上成千上万数学家的注意。200年过去了,没有人证明它。也没有任何实质性进展。哥德**猜想由此成为数学皇冠上一颗可望不可及的明珠人们对哥德**猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。所以,在此且不谈前人对哥德**猜想的研究及研究成果。仅就前人对哥德**猜想研究中的缺憾,谈我个人的一点看法,就算表达本人数十年来对哥德**猜想问题研究的心得吧。
    1
    歌德**猜想-----一个不完整的数学命题
    通过对哥德**猜想发展史的了解,会让人觉得哥德**猜想不但是一个非常严密及其完整的数学命题,而且目前没有人证明它。7 R/ X" V4 z9 X6 e
           难道哥德**猜想真的像某些“数学大家”所言:“是当今数学水平不能解决的难题”吗?事实并非入此。正于陈木法老师所言,数学研究不必非得去解答别人提出的问题,我们要多做些原创性的研究,注重整体研究力量的提高。事实上,歌德**猜想问题作为一个数学命题,是片面而不完整的。也正由于其命题的不完整,影响了我们对整数域中偶数素数复合数,等等各类数的性质及其相互关系的进一步认识,从而影响了对哥德**猜想问题的顺利解决。/ c" Y) m/ s) h$ G' H
    我们之所以说歌德**猜想不是一个完整的命题。是因为,只要我们对正整数稍加留意研究就会发现,对于大多数偶数而言,其表示偶数为二素数之和的“素数对”数量并非一对,往往有很多对。如
    7 ~2 Z+ S6 J2 x  V
    2=1+1

    ' j2 X0 ?6 s4 |$ z: w' ^
    4=3+1

    ( r! Q/ x) {/ v; c
    6=5+1=3+3
    3 e. I( \% p1 t& U: b% y/ q
    8=7+1=5+3

    - U5 ]9 N# O1 x' d5 U
    10=7+3=5+5

    3 }& B  d9 B1 a
    12=11+1=7+5
    2 o9 ^- w1 q+ B8 P( m) @
    14=13+1=7+7
    2 m8 l, y5 i$ _% p6 u1 y7 w
    16=13+3=11+5
    ; E, e7 v# a7 W( c
    18=17+1=13+5

    5 W9 N/ r# o  I  p0 M4 x9 s
    20=19+1=17+3=13+7

    - r1 S) w! F0 C0 V- R) Y. s- B+ i
    ……
    * u3 m8 l7 J1 m* j* ^- M
    30=29+1=23+7=19+11=17+13
    ……
    60=59+1=53+7=47+13=43+17=41+19=37+23=31+29
    等等。
    ( U+ @8 I; |$ s/ l+ V, `由以上事实我们不难发现,在正整数域内,表示偶数为二素数之和的素数对数量,随着偶数的不断增大其素数对数量也随着不断增多。由此看来作为一个经典的数学命题“哥德**猜想”的确不够全面。所以,取而代之的应当是:在正整数域内,是否任一个偶数均能表示为二素数之和?若能表示为二素数之和,其表示该偶数的“素数对”数量是多少?但是,在对哥德**猜想研究的两百多年的时间里,竟没有人发现并提出这个及其简明问题,这不能不说是歌德**猜想研究中的一大缺憾。
    " |% M/ h# }( U+ G- u4 Q7 q
    % l' [+ [2 X0 Z  a0 d本人经过多年研究,不但找到了该问题得不到解决的原因;而且找到了解决该问题的切入点。在此我可负责任地说,我们可用当今较初等的数学方法,解决哥德**猜想以及与之相关的诸多数学问题。并且,用严格的数学方法进行论证,得出结论如下:即
    % P( R1 K+ p* I1 D" i6 l. Y正整数域内,任何一个(充分大)偶数2a,均可表示为二奇素数之和。而且,当偶数2a不断增大时,表示该偶数的哥德**“素数对”的数量也随着增加。其表示该偶数2a的哥德**“素数对”的数量G(2a),均等于或大于该偶数2a平方根的四分之一。即
    3 w# J3 M$ x% U/ v6 ]! |% F
    2 o3 Y( J* i5 }4 D9 }
    G(2a)2a/4≥1
    % q( @5 Q' [$ g) v/ I2 L" _
    9 a  g3 k+ s( X  R6 V3 K! u
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-11-7 16:53 , Processed in 1.537227 second(s), 50 queries .

    回顶部