QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2751|回复: 1
打印 上一主题 下一主题

Mutations Found in Human Induced Pluripotent Stem Cells

[复制链接]
字体大小: 正常 放大
张立涛 实名认证       

280

主题

5

听众

2452

积分

  • TA的每日心情
    奋斗
    2015-10-7 09:09
  • 签到天数: 75 天

    [LV.6]常住居民II

    优秀斑竹奖

    群组西北工业大学

    群组Matlab讨论组

    群组狂热数模爱好者

    群组岩土力学与地下工程

    跳转到指定楼层
    1#
    发表于 2011-3-6 14:47 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Ordinary human cells reprogrammed as induced pluripotent stem cells (hiPSCs) may ultimately revolutionize personalized medicine by creating new and diverse therapies unique to individual patients. But important and unanswered questions have persisted about the safety of these cells, in particular whether their genetic material is altered during the reprogramming process.

    A new study -- published in the March 3 issue of the journal Nature and led by scientists at the University of California, San Diego in collaboration with other leading stem cell research groups -- finds that the genetic material of reprogrammed cells may in fact be compromised, and suggests that extensive genetic screening of hiPSCs become standard practice before these stem cells are used clinically.
    A national team of researchers, co-directed by Kun Zhang, PhD, an assistant professor of bioengineering in the UC San Diego Jacobs School of Engineering, examined 22 different hiPSC lines obtained from seven research groups that employed different methods to reprogram skin cells into pluripotent stem cells. In all of these cell lines, the researchers found protein-coding point mutations, an estimated six mutations per exome. The exome is the part of the genome that contains the genetic instructions for ** proteins and other gene products.
    "Every single stem cell line we looked at had mutations. Based on our best knowledge, we expected to see 10 times fewer mutations than we actually observed," said Zhang, a faculty member of the Institute for Genomic Medicine and the Institute of Engineering in Medicine, both at UC San Diego.
    The findings help answer the question of whether reprogramming adult mammalian cells into hiPSCs affects the overall genome at the fundamental level of single nucleotides. They do. Zhang called the mutations "permanent genome scars."
    The scientists said while some of the mutations appeared to be silent, the majority did change specific protein functions, including those in genes associated with causative effects in cancers.
    "Reprogrammed stem cells provide an important new tool in the fight against human disease, but to use these cells directly in the clinic, we must ensure that they are safe and that we are able to define their structure and behavior in the most precise terms," said Lawrence S.B. Goldstein, PhD, professor in the Department of Cellular and Molecular Medicine at the UCSD School of Medicine and co-director of the study with Zhang. Goldstein is also director of the UC San Diego Stem Cell Program.
    "Our studies open a new window into the genetic behavior of these important types of stem cells and begin to define some new and straightforward safety standards that may help accelerate their use in clinical settings," Goldstein added.
    The study examined stem cell lines from many of the leading stem cell research groups in the United States, including lines from the laboratories of James Thomson at the University of Wisconsin-Madison and George Daley at the Children's Hospital Boston, the first U.S.-based labs to reprogram human cells.
    "We covered cell lines derived from seven different labs because we wanted to make sure our conclusions are general enough to make realistic extrapolations," said Zhang.
    The interdisciplinary team at UC San Diego developed a new, highly sensitive assay to identify mutations that occur at very low frequencies in the starting cells of cell lines. They discovered that roughly half of the mutations found in stem cell lines were present in starting cells at very low levels. That is, they occurred in a few cells sometime during the person's life or during cell culture in the lab, and were somatic or not inherited. The other half of the mutations were too rare to detect in starting cells, meaning they could have occurred during or after reprogramming.
    The mutations, which the scientists dubbed "reprogramming-associated mutations," came from three different sources: a first group that included mutations already present in skin cells before reprogramming; a second group of mutations that occurred during reprogramming; and a third group of mutations that occurred after reprogramming, when pluripotent cells began proliferating.
    The work is complementary to research published in Cell Stem Cell in January 2011 by another team of scientists at UC San Diego and elsewhere that documented other types of genetic abnormalities in both human embryonic and hiPSC lines after reprogramming and extended culture. That ** reported that human pluripotent and induced pluripotent cells had higher frequencies of genomic aberrations than other cell types. The latest work presents new findings about a different type of important genetic damage: changes occurring during reprogramming in single nucleotides or base pairs that alter the crucial protein building blocks of cells.
    "These studies look at two different aspects of stem cell mutations," said Zhang, "but their take-home message is the same -- things can go wrong at the genome level when reprogramming and growing reprogrammed cells. So, to maximize safety, before we put these cells back in the human body for therapeutic purposes, we must be sure that the cells contain the same genome as the recipient, with no cancer-causing or other serious types of mutations."
    Additional authors to the ** include Athurva Gore, Zhe Li and Ho-Lim Fung of the Department of Bioengineering, Institute for Genomic Medicine and Institute of Engineering in Medicine, UC San Diego; Jessica E. Young, Isabel Canto, Mason A. Israel and Melissa L. Wilbert, Department of Cellular and Molecular Medicine and Howard Hughes Medical Institute, UC San Diego; Suneet Agarwal, Yuin-Han Loh, Philip D. Manos and George Q. Daley, Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Boston; Jessica Antosiewicz-Bourget, Junying Yu and James A. Thomson, Department of Anatomy, University of Wisconsin-Madison; Alessandra Giorgetti, Nuria Montserrat of the Center of Regenerative Medicine, Barcelona, Spain; Juan Carlos Izpisua Belmonte of the Center of Regenerative Medicine, Barcelona, Spain and the Salk Institute for Biological Studies; Evangelos Kiskinis and Kevin Eggan, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University; Je-Hyuk Lee, Department of Genetics, Harvard Medical School; Athanasia D. Panopoulos and Sergio Ruiz, Salk Institute for Biological Studies; Ewen F. Kirkness, J. Craig Venter Institute; Derrick J. Rossi, Immune Disease Institute, Children's Hospital Boston.
    This study was funded in part by grants from the National Institutes of Health and the California Institute for Regenerative Medicine.
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    优秀的男人最有魅力!

    29

    主题

    8

    听众

    5128

    积分

    升级  2.56%

  • TA的每日心情
    开心
    2025-8-12 08:46
  • 签到天数: 1572 天

    [LV.Master]伴坛终老

    自我介绍
    我是贵州大学的研究生,我想来数模中国社区同大家分享数学学习的快乐和魅力,走进数学的神圣殿堂,我们将会流连忘返,我愿和数模中国社区的朋友一道,分享学习和研究的喜怒哀乐!

    群组华南理工大学

    群组数学建模

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模培训课堂2

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-13 03:33 , Processed in 0.798325 second(s), 57 queries .

    回顶部