- 在线时间
- 6 小时
- 最后登录
- 2017-2-16
- 注册时间
- 2011-3-28
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 143 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 48
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 10
- 主题
- 1
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   45.26% 该用户从未签到
|
題目如下, 請高手幫幫忙 ^^
4 S' Q) `! ]5 ^1 U6 v1. Write a function that as input has an expression f, and returns the logarithmic derivate 1/f (d f)/(d x) . Use a conditional or pattern test to make your function accept any symbols as input except for lists. 8 @) x) J* E! A$ j% i+ B
2 A: [7 b# |+ y0 p1 j4 e
2.
0 T0 }# t4 a1 Wa) Write a recursive function that computes the function f[n] defined by 6 n f[n]=f[n-1]+n! for n>0, and f[0]=7. Restrict the argument to positive integers.
% t/ G4 |3 W0 bb) Write and test a program that computes f[n] using Module and a While loop.) A+ N r& ^+ r2 v8 B" o0 ]
c) Compare the timings of the two methods by computing f[n] in both cases for very large values of n and/or doing the computation many times. You may have to use Clear or restart to clear Mathematica's memory of previous calculations. Explain your results.
- f: ^5 h1 z9 n4 h, b% y. E1 F9 q) G- i2 }! ?5 d
Consider the iterative map Subscript[x, n] == 1/2 Subsuperscript[x, n-1, 2] -\[Mu].
7 j: a+ `; ~2 ^0 u' Ua) Compute its fixed points and 2-cycles as a function of \[Mu].
8 w. t) n3 ]: }* K/ l: K. [5 ]b) Using linear stability analysis, compute the range of stability of both the fixed points as well as the 2-cycles.
. Y: m+ q3 ~+ M8 u) ? m9 V% Mc) Show cobweb diagrams for representative parameters illustrating the (un)stable fixed point and 2-cycle.
4 J! T# H- Z8 w. d! Y5 ]: O4 G3 fd) Graphically demonstrate the onset of a stable 3-cycle.
2 f+ h# v7 `. X6 E# m& _e) Produce the bifurcation diagram. |
|