QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4274|回复: 3
打印 上一主题 下一主题

[求助]谁能帮我翻译一下这篇文章?~

[复制链接]
字体大小: 正常 放大
angel_lys        

2

主题

0

听众

22

积分

升级  17.89%

该用户从未签到

新人进步奖

跳转到指定楼层
1#
发表于 2007-11-23 22:16 |只看该作者 |倒序浏览
|招呼Ta 关注Ta

文章是讲一致收敛和微分的~我英语不好看不明白~请大家帮帮忙啊~~~~

Theorem 9.13. Assume that each term of is a real-valued function having a finite derivative at each point of an open interval6 c$ B+ i- b6 r" W% ?9 F . Assume that for at least one point 8 B4 Y3 Y) \: U; f4 m- a in* l$ n/ s }2 q9 J" c: { the sequence converges. Assume further that there exists a function g such that( b6 a' o# E# P6 U6 r- r+ K* v uniformly on* `4 `1 y6 |, g, E . Then:

2 S' k* F, [7 c% Q- x4 {9 j

a) There exists a function f such that }) ~* K( i* [ uniformly on& [2 [( G" w2 g" P! Q .

b) For each x in ; W3 j% L2 f5 T% v the derivative ! ?7 x4 B$ V" q2 O$ `5 p exists and equal R2 o- Y: T- R( ^! f .

Proof. Assume that 5 E" \% `1 {- } and define a new sequence 8 P1 w& o9 X9 H& y as follows:

* v6 a6 j+ W1 |

6 ?) b9 X2 d; J; ]2 m (8)

8 p1 H6 k! e- c' w% S+ ^

The sequence! f- R3 U6 x) b- H: g so formed depends on the choice of c. Convergence of follows from the hypothesis, since # r/ M. z6 n! A t* ^2 ` ^ . We will prove next that : g/ T9 z2 ]( J5 c4 F& C converges uniformly on% r! G3 b0 O# g5 G. a+ p3 P . If , we have

s" S, s* A" x: {2 k

, / ?$ S9 K! u# [, C (9)

/ ?& x& W h0 i

where k7 e& d) c& R# e1 V) D/ h p . Now . O3 I8 T+ c( `7 |' K" U exists for each x in: b# Z% S0 V. P; G* S and has the value4 J- P* n# q: A$ [ . Applying the Mean-Value Theorem in (9), we get

, 9 S3 H- x8 ?; ? 4 l3 e- x, N. @# s) w (10)

where9 Q* \, I) g' O7 U) \7 q lies between x and c. Since2 X. g% m; I' W) ?) `. s, `7 c converges uniformly on + O A9 q* X" [; v# u; C) T& J- k (by hypothesis), we can use (10), together with the Cauthy condition, to deduce that : x, d: W: V$ f/ F3 e, s4 G converges uniformly on * d/ l6 Y+ ]9 A5 q+ l .

Now we can show that : h% X) O* |5 h: P1 Q, g converges uniformly on0 `! @8 b! y0 S" y . Let us form the particular sequence / I* X" { w" S! i( [, E( {! \ corresponding to the special point2 N8 N* c0 b: ^6 A. y* G for which( Q- K9 J+ P! r9 W4 w/ @ |. l is assumed to converge. Form (8) we can write

an equation which holds for every x in; h& }. q" |' ^ A . Hence we have

This equation, with the help of the Cauthy condition, establishes the uniform convergence of on - u/ j( m* r4 M% l . This proves (a).

To prove (b), return to the sequence & g5 c6 F& Q5 P) D defined by (8) for an arbitrary point c in 3 _8 K7 I/ I- L8 p4 i and let' v- {$ K# d! R/ a, G . The hypothesis that0 J- L1 ^4 }) f4 ]1 g9 ]1 A5 `1 p exists means that . In other words, each - F3 Z b$ z& E% R is continuous at c. Since& w/ e* S! }0 D" I8 `: q8 Y, j uniformly on F+ q1 A" t7 G, [& v , the limit function G is also continuous at c. This means that

1 F: E, i8 @3 \" Z* q" J (11)

the existence of the limit being part of the conclusion. But for( J2 u2 y5 C5 K% [# q4 T; D , we have

Hence, (11) states that the derivative / i4 w$ o% m' E4 P: Z exists and equals) u3 D: b- |8 ], y1 u- o . But

hence; [4 n1 f$ w8 K" L% x . Since c is an arbitrary point of. t0 L% P, j: w7 f0 p9 q Q! a , this proves (b).

When we reformulate Theorem 9.13 in terms of series, we obtain

; f0 e5 s: x7 b( [

Theorem 9.14. Assume that each. Y# U* @9 `% e" c9 o is a real-valued function defined on& Y+ `6 P; U. p/ P7 r1 M- j1 c0 t: U a such that the derivative 0 B' i+ U* k) w o3 n exists for each x in : u1 s9 ?; Z6 t . Assume that, for at least one point & P( c4 w5 X' Z9 a# U% { in! w2 n) s2 R% F% g , the series 7 {- f: N% B7 B/ f8 r converges. Assume further that there exists a function g such that (uniformly on5 Y- n7 ?* [/ N6 [; ?3 k, g ). Then:

a) " T0 T0 ~& B0 H1 Y There exists a function f such that 4 }* H' s- h9 z* q. }! _ (uniformly on 0 t% ~- F# H$ W8 g" n; E2 a4 U ).

b)# u% @1 a9 k( j If , the derivative( w9 h* S+ ^4 y1 g% p4 w5 d exists and equals% Z4 Q; X5 ~) }+ f0 f# C .

zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
lzh0601        

2

主题

3

听众

89

积分

升级  88.42%

该用户从未签到

回复

使用道具 举报

0

主题

0

听众

3

积分

升级  60%

该用户从未签到

 “Theorem 9.13. Assume that each term of is a。。。。。” 这里面有没有漏了字?
7 Z$ s |0 ]" T! F0 u. Q% J
[此贴子已经被作者于2008-7-28 14:24:38编辑过]
回复

使用道具 举报

rao        

6

主题

3

听众

80

积分

升级  78.95%

该用户从未签到

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-8-14 19:26 , Processed in 0.516521 second(s), 72 queries .

回顶部