- 在线时间
- 8 小时
- 最后登录
- 2016-11-7
- 注册时间
- 2011-6-23
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 148 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 51
- 相册
- 0
- 日志
- 0
- 记录
- 1
- 帖子
- 17
- 主题
- 6
- 精华
- 0
- 分享
- 0
- 好友
- 5
升级   48.42% TA的每日心情 | 开心 2016-11-7 00:15 |
|---|
签到天数: 7 天 [LV.3]偶尔看看II
 |
一 基于均值生成函数时间序列预测算法程序
2 h0 d" [& q" Q1. predict_fun.m为主程序;2 @8 y% ^$ t4 ?# H1 J" {6 u
2. timeseries.m和 serie**pan.m为调用的子程序" W9 O; g' B7 C* y# m! r
& h3 Y1 r1 c& e+ e' y: i2 L0 dfunction ima_pre=predict_fun(b,step)* U4 _" c/ [, ^% D5 b/ E5 ~8 F: c
% main program invokes timeseries.m and serie**pan.m
3 T( g7 ^- u- _& Y7 V2 \/ r) T" b8 o( I% input parameters:6 E+ V: Q( b' J4 D$ K2 A
% b-------the training data (vector);( Y4 N3 c/ `0 B6 M
% step----number of prediction data;
! k6 V4 n% v1 p+ \6 ~1 j/ W% output parameters:
8 G r F7 o6 I! z1 e7 a" e0 V% ima_pre---the prediction data(vector);0 a T n1 [: z0 m
old_b=b;
" @- r" }1 ?. ? M7 J6 s" x0 ]mean_b=sum(old_b)/length(old_b);' M# R! U! l* e3 H' v
std_b=std(old_b);
8 J. K/ S' u% U; Zold_b=(old_b-mean_b)/std_b;
# c( H9 D m. p1 g4 p9 }[f,x]=timeseries(old_b);2 y3 @/ B% R$ ]% R( i% q
old_f2=serie**pan(old_b,step);! _+ H9 [& I! f. Y
% f(f<0.0001&f>-0.0001)=f(f<0.0001&f>-0.0001)+eps;
- s* U, a9 f+ E: z7 T4 V* C4 PR=corrcoef(f);; I1 _# C j+ r' F4 g6 v
[eigvector eigroot]=eig(R);6 |3 |# Q9 T d1 P/ `9 V# h
eigroot=diag(eigroot);# m2 Z' I% J; ^) T- x: ?3 }/ l0 _
a=eigroot(end:-1:1);
$ Q `2 u- I4 b, {6 i H# Rvector=eigvector(:,end:-1:1);
* x0 H8 T$ g; [4 G+ `4 VDevote=a./sum(a);/ R% S2 [$ N# m N
Devotem=cumsum(Devote);
7 C1 L# _0 ]& U: Km=find(Devotem>=0.995);- n3 d# C: O* M+ `7 I _' B" @
m=m(1);
/ |. s3 \1 Y3 p! l5 q$ E2 {3 uV1=f*eigvector';
2 A: s# I0 g6 p9 \V=V1(:,1:m);
9 G3 Z: I N+ o, h2 A( E4 d! C% old_b=old_b;
2 E2 m$ i0 G0 u1 V7 @& fold_fai=inv(V'*V)*V'*old_b;
0 J: k; [, J4 e5 R: I" }eigvector=eigvector(1:m,1:m);
% I7 m, O; M8 k7 E+ p/ s4 zfai=eigvector*old_fai;
- ~' y" X, w; T+ d; Z+ Vf2=old_f2(:,1:m);
: U. C7 t/ v7 J; J$ {predictvalue=f2*fai;
# M" l& Q; Y2 k: x9 e/ e- Jima_pre=std_b*predictvalue+mean_b;: @, ?: k, c! X" [
# _: }2 q8 Z) A- G' {' `1.子函数: timeseries.m
! Q+ j4 z/ ]7 s% timeseries program%
$ d8 w2 f& O' i: ]% I. {4 C, D% this program is used to generate mean value matrix f;
# k8 O* C. ]' j4 {) E2 @0 T7 {; dfunction [f,x]=timeseries(data) % S v8 @- H# @2 g& u! C, {/ e7 ?
% data--------the input sequence (vector);( f" `* D4 U' u; P: X! @+ {/ b
% f------mean value matrix f;- l% f( X% ]7 y0 E6 f9 Y: U, S
n=length(data);
7 J0 P! u6 Y8 G! J- P! }& `, Yfor L=1:n/2& N/ l2 a$ g7 }! W
nL=floor(n/L);
# |) p. W- _2 T1 Q. m; u for i=1:L: V% I( Z2 B5 c9 I2 W
sum=0;. ]; T$ T7 [! u# r3 q( P
for j=1:nL$ m- V; |9 P& A* Z
sum=sum+data(i+(j-1)*L);
4 u0 i: s9 X, E end+ z5 V+ P6 g9 f9 q7 E7 J
x{L,i}=sum/nL;, ^' }; N- ^" Q: y
end/ F: |7 l1 Z$ ?4 ^; p0 f: W
end
: j7 L# P0 j M% E2 n) A8 c" }5 B; `L=n/2;8 L5 |, U6 @- o
f=zeros(n,L);
% h! ^4 i& v; H$ ?2 T5 J1 lfor i=1:L
& Y" P4 I3 g7 S: A rep=floor(n/i);
$ N, v+ V0 m; W0 l" l0 B9 b res=mod(n,i);3 X* d% e: W" R8 h1 ~5 k0 \) z. r/ [
b=[x{i,1:i}];b=b';' y+ w- f% m. n0 V) F
f(1:rep*i,i)=repmat(b,rep,1);
6 K' ^# [' I b: z2 n; l if res~=0
# _- I3 q. V3 g& Y) Q- }. u, a c=rep*i+1:n;
7 x, W% m. Q8 F( C2 t! |1 a f(rep*i+1:end,i)=b(1:length(c));
4 @0 ^& [1 w) g9 h# C end
# N0 q, L! | ^! @6 q9 B0 z; Eend
1 s/ O$ W3 Y9 L. l+ ]6 p" M; M4 D; M+ h% N) Q! \9 i5 q2 k/ P
% serie**pan.m2 A. Z3 f1 N( o( }9 Z
% the program is used to generate the prediction matrix f; 1 R6 [: T, u/ c# ^ z) E
function f=serie**pan(data,step);6 f2 U3 s3 @* a, L
%data---- the input sequence (vector)% e e- f; z8 r2 A
% setp---- the prediction number;0 N" w# @5 m) @+ I0 M* v2 Y( x2 B
n=length(data);
2 g/ E: t/ K$ A: r) _for L=1:n/2
! C' f$ i9 j. {3 K; C, _! d nL=floor(n/L);! H4 ?+ b( n: |& H7 o9 @2 t/ `
for i=1:L
* @) ?6 {- f& a; ~ sum=0;
2 g% k8 S2 |( D: y, h for j=1:nL2 H$ @+ C) x R. e% b0 i5 ]
sum=sum+data(i+(j-1)*L);
0 N) F) ]% a" H; r end
! |& k+ l' ~9 @# s* L/ D. c: x/ P4 q x{L,i}=sum/nL;% w% \, N6 c4 z' N
end0 X! m6 D3 R# L- h3 D F& l; N" p
end* r* W- y9 p- C' o" w( Y% h
L=n/2;9 Q, n( q5 `: E; c: O" D5 l
f=zeros(n+step,L);+ E! |1 ?1 J* A6 R* G5 }+ @
for i=1:L
6 D K; V6 I! {6 s Z2 N rep=floor((n+step)/i); h# P4 r0 ]8 t; _+ A8 K# x
res=mod(n+step,i);5 J& W* n [/ \! J, V' `. I
b=[x{i,1:i}];b=b';
" L0 ]' e7 g# Q( f f(1:rep*i,i)=repmat(b,rep,1);
' |: u6 V) d2 B+ W A6 k if res~=0
4 ^, a1 x5 F. F- U5 w c=rep*i+1:n+step;
" W/ | @( r, s! r8 E) V f(rep*i+1:end,i)=b(1:length(c));% Z# G) K+ N& b$ q0 t0 Q
end
6 Z) b! w2 r5 |4 }. ]# Pend) `% i) l7 f( X7 t' U; L
4 k- U; I) l; n; e0 H二 最短路Dijkstra算法& {7 P5 p: ^& w: D3 K; s1 V0 z/ i
% dijkstra algorithm code program%
. F- }1 W: p9 _/ @% the shortest path length algorithm; R d3 m" q7 T, _7 F! w0 y; v5 Z
function [path,short_distance]=ShortPath_Dijkstra(Input_weight,start,endpoint)6 j$ B9 f4 x5 T ^
% Input parameters:
/ w) ]( R9 r8 X, B3 b8 E% Input_weight-------the input node weight!, ]' [+ Q* D0 m, q
% start--------the start node number;
! I& N0 F' ^8 b- W% endpoint------the end node number;" n( E+ o" U- k/ p4 \+ h
% Output parameters:
7 M" V, f/ @: m/ {6 {5 q1 o# A; H& k% path-----the shortest lenght path from the start node to end node;
% i, U8 Z( x1 P# }% short_distance------the distance of the shortest lenght path from the' M8 z! G4 d/ P
% start node to end node.! M* _8 T3 m! J) L
[row,col]=size(Input_weight);- w9 B$ g# g! |& [1 E! e( ?( B
/ y5 P# y. r5 y& ~7 n
%input detection
7 `3 y: a. X/ x6 M, k* h3 Rif row~=col+ _% Y. M/ s% J6 {1 r
error('input matrix is not a square matrix,input error ' );
9 I6 ?- Z. E% S0 }; jend
7 T6 [1 A) g! \& G. m2 M: R; dif endpoint>row
. M* B+ l+ z% v error('input parameter endpoint exceed the maximal point number');5 g$ Q. U( O3 j! n
end) L" `+ ]" x$ `. u9 }" p
5 |, |2 D8 K5 f/ R2 \0 o
%initialization5 u d0 d: D4 b9 P# S3 P
s_path=[start];
E' Q1 ?: u5 ?: i& S- n) b0 Wdistance=inf*ones(1,row);distance(start)=0;4 V7 ^) O: h$ c# D& d
flag(start)=start;temp=start;5 p) J/ A( W& l" b
* v$ x' g! f, U% z, S" ~" L
while length(s_path)<row) v$ l: X0 [6 r4 V
pos=find(Input_weight(temp, : )~=inf);6 z& L4 B. f+ w6 q R
for i=1:length(pos) b" M) i$ g6 S7 p) B% [* Z
if (length(find(s_path==pos(i)))==0)&
1 R- R6 j& S! x9 W* K1 c5 H(distance(pos(i))>(distance(temp)+Input_weight(temp,pos(i))))# c @5 u/ z, e1 g4 a
distance(pos(i))=distance(temp)+Input_weight(temp,pos(i));8 r1 y* }4 g w( j6 ]0 a3 k, Y
flag(pos(i))=temp;
a4 y0 J2 G4 D6 x5 y! x3 r! t6 w end
# q; g) f+ I4 V' }! R9 H+ N end; v: a2 Y- N9 e0 D7 F/ H
k=inf;
! x6 I0 i4 q$ L- G for i=1:row& O+ ?2 t0 w0 r. p' r8 S, M0 v
if (length(find(s_path==i))==0)&(k>distance(i))+ Y& v/ _8 V: s9 V9 } r0 ]. ?
k=distance(i);
8 e3 m0 S2 i9 h/ v! h6 B# q% m temp_2=i;2 ?2 u& I4 r' J* Z# I) w. V( ?
end
( f, t2 k* Q8 @( W+ f n end
2 ?& e \$ ?) ]; C s_path=[s_path,temp_2];! Z( G$ v5 g. L0 Y- x2 ?$ `$ _
temp=temp_2;/ A$ J; u1 k. I% x
end1 S7 M. G6 Y' h: A" q F
1 Y' P/ `- G t5 I+ ]%output the result
' a0 o& m6 U% i/ \8 Cpath(1)=endpoint;
@0 X% X( B- |$ }' P: o* Mi=1;( I0 S5 ?7 Q$ s: {2 }1 a1 J
while path(i)~=start
& @* r, Q7 r( F" n( I/ k% r path(i+1)=flag(path(i));- }' H/ z1 u$ B* a9 a% }
i=i+1;
# u! Z0 Z r/ P$ L- Q [8 V2 S/ X# W$ B6 |end2 f# F' L5 |3 L7 K6 N+ y
path(i)=start; @* y, u, }7 a( ?) }7 K
path=path(end:-1:1);' L, s$ K; w. L; p
short_distance=distance(endpoint);4 f8 V/ q* `' h" M( }
三 绘制差分方程的映射分叉图
3 y2 I7 k2 m4 S f( }5 B7 C
) \: `, [4 m% b2 t2 Z6 \function fork1(a);
! d P8 s, K n1 P9 @3 M4 z% z+ e2 `6 G8 d
% 绘制x_(n+1)=1-a*x^2_n映射的分叉图/ E: O+ H; [( t" {: K$ J
% Example:
d3 {9 z- Q l9 @$ [% fork1([0,2]);
4 s, k, T" h! _& SN=300; % 取样点数
7 e9 i5 U( p1 U9 d; u: D3 lA=linspace(a(1),a(2),N); 2 r8 v3 c+ K9 O7 H, `( u
starx=0.9; : S5 `- {" i: I
Z=[];& F: c9 ~* U q1 I2 b4 L4 }
h=waitbar(0,'please wait');m=1;. C7 [7 T' A% i" M$ u' D
for ap=A; S& K' A; t! }$ Q6 N
x=starx; $ H6 J, k, m2 R& v% b' O
for k=1:50;
: C$ K" K9 i9 M, U) R2 ?* R1 q x=1-ap*x^2; 8 ?- Y4 M. w. v# }8 e: G
end 3 b" |+ z. q# [- `+ V
for k=1:201;
; _" N d! O1 p7 g x=1-ap*x^2;
) d. T5 {4 A; [ Z=[Z,ap-x*i]; - \/ O# b) e! [, x- ~. c. A
end . q0 P, T' c3 V& L
waitbar(m/N,h,['completed ',num2str(round(100*m/N)),'%'],h);- E; ~; J9 y; {7 M
m=m+1;! B5 h: n: x' c3 g
end $ @4 u( |6 c# o/ x1 w1 O
delete(h);
, r h3 a; o1 Z* v) l& m2 Splot(Z,'.','markersize',2)
" O! u" M: Y. U. A7 y$ m& t" dxlim(a);
% E# L0 A5 N2 ?
8 n" f+ b" Y- g* O" U. ?* T% O2 n6 `四 最短路算法------floyd算法2 O O. t+ Z% J% ]7 a, O! R/ Z' p
function ShortPath_floyd(w,start,terminal)
. M% Q2 \& a6 s* [% G% G8 [* C%w----adjoin matrix, w=[0 50 inf inf inf;inf 0 inf inf 80;
- o3 v* H- T) L) _! }%inf 30 0 20 inf;inf inf inf 0 70;65 inf 100 inf 0];: x& o+ f; K( _/ A0 w% k
%start-----the start node;
$ R$ z. \. h' ^9 o3 x" a%terminal--------the end node; : L2 j- r! D& E
n=size(w,1);
1 s0 [$ p- s9 u1 D. h% {& J[D,path]=floyd1(w);%调用floyd算法程序! { y7 u2 z4 V- D
6 k7 P% v7 V J) G) U. D: D
%找出任意两点之间的最短路径,并输出& o, c! [; a1 ]( f! ?
for i=1:n
# l3 `. d" v3 G9 L6 s1 g for j=1:n [7 C. L' w4 V2 X, R# k+ [( x
Min_path(i,j).distance=D(i,j);# v7 N5 u5 w8 o! w! s( {3 C
%将i到j的最短路程赋值 Min_path(i,j).distance
. L) D, W9 p/ ]$ z3 c %将i到j所经路径赋给Min_path(i,j).path/ `1 G3 s0 q0 _& S; q# e
Min_path(i,j).path(1)=i;
: ^* n* Y# V1 }+ p* n$ ~% J7 p k=1;
# o0 L. `& ?, U \ while Min_path(i,j).path(k)~=j
5 r! c3 j2 l2 T7 q( ~2 y1 M4 } k=k+1;4 m" D% }2 Z* B
Min_path(i,j).path(k)=path(Min_path(i,j).path(k-1),j);
% P1 }7 |3 ?' _ end$ @: w j0 c0 u) f- K/ o* B- ~
end, D+ R' O3 B% l, f2 r$ H/ ?
end- h9 B& F3 w* E1 t6 ^- |/ R, l
s=sprintf('任意两点之间的最短路径如下:');
2 s: u0 V" w) A+ O* C6 Udisp(s);
* e( U: N, o4 ]( h( y% w1 Hfor i=1:n
" ^' y$ t' x$ e' c! z for j=1:n {. Y p* |. m8 y8 A
s=sprintf('从%d到%d的最短路径长度为:%d\n所经路径为:'...
2 x. F# M" Q& V ,i,j,Min_path(i,j).distance); d' i q# \" A% |8 W0 R7 i0 G
disp(s);2 }4 E* L1 j7 s1 W& v8 |5 \9 U0 z
disp(Min_path(i,j).path);* I% _( I- W, G% J; S ?
end
1 i) L6 I; Z5 c4 Q2 }) c$ Rend
6 s$ b8 S& g3 t$ l8 g, \% H/ {3 S- P* h4 K3 p
%找出在指定从start点到terminal点的最短路径,并输出4 v( N" T0 M$ ^5 s4 O0 Y
str1=sprintf('从%d到%d的最短路径长度为:%d\n所经路径为:',...
) V% I8 I/ {" u start,terminal,Min_path(start,terminal).distance);" i3 ~2 ]8 `: J! R
disp(str1);5 A0 X9 k$ ?( @
disp(Min_path(start,terminal).path);: I4 \- U' h9 a, i2 ~ F9 v
) r( T) p) a- l%Foldy's Algorithm 算法程序0 a$ _. s" R1 N+ o; M8 h, u6 I0 I
function [D,path]=floyd1(a); ?2 [( M8 a S. b) s2 \8 F
n=size(a,1);9 ?3 u6 k2 V) I8 n& q+ S
D=a;path=zeros(n,n);%设置D和path的初值. A. @- ~4 ^; C$ k
for i=1:n1 f: ~5 R9 `: ?) L) }
for j=1:n
& Z* }+ I1 t$ C6 K7 ~ if D(i,j)~=inf3 t9 f! i* y* U# G: j6 L
path(i,j)=j;%j是i的后点
1 N4 A8 Q, D# @4 K7 a! W# r+ ~2 o end7 }- n S7 I% Z: ]" j9 i8 \
end
+ d: I; F4 x8 k5 t7 I E/ A4 hend
( s& d- ~9 h J7 F%做n次迭代,每次迭代都更新D(i,j)和path(i,j)9 v: Q5 G; o, u9 [6 S4 a
for k=1:n
6 U5 g5 h& x1 h/ ? for i=1:n5 v+ p& T) d/ G, J' [2 B
for j=1:n
1 |% l- [7 g) z if D(i,k)+D(k,j)<D(i,j)
) l2 d) S; E4 H( b; ~ D(i,j)=D(i,k)+D(k,j);%修改长度, D9 s# H ?# C: m: {4 ?. @
path(i,j)=path(i,k);%修改路径
1 X1 L. i. |- d* b/ [ end
- L: `& j T" p9 [ end
& `6 |' `0 N7 Q; j4 V1 Q g end2 I' P& O+ c' G6 b/ `
end8 Q7 E/ n* h+ j5 V7 B% p
% s+ o1 g- S6 j! R4 l9 U
五 模拟退火算法源程序$ }; S% |1 L) V: d2 Y
function [MinD,BestPath]=MainAneal(CityPosition,pn), e2 Q/ g) |* V
function [MinD,BestPath]=MainAneal2(CityPosition,pn)
) P3 }# |4 { x S1 z4 L%此题以中国31省会城市的最短旅行路径为例,给出TSP问题的模拟退火程序
9 W* E* ]1 X6 p$ Z- q0 R%CityPosition_31=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;... \+ `6 H( b; C
% 3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;...7 q5 Y) ?7 ^$ C
% 2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;...% Y9 Y( j/ S& B. h1 z" R G. H
% 3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;...
4 G5 X9 |8 Z( `3 A% 3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;2370 2975];
( I% o" c' @ j$ r' W9 j- t
0 |" a$ R. L; I8 T5 X' F$ J%T0=clock
. [4 N$ K6 v6 }6 M+ @9 r) a' Oglobal path p2 D;
0 h0 S6 k0 \$ {4 w( i" |% f[m,n]=size(CityPosition);
& T5 b. J) n5 S4 {9 d+ ~& Q%生成初始解空间,这样可以比逐步分配空间运行快一些
0 R$ ~1 d$ P* b* G% X% YTracePath=zeros(1e3,m);
F$ D. P \ q! iDistance=inf*zeros(1,1e3);- A* x& x+ O9 @" m5 |" B( r
, z0 I4 V: c5 n& }- r0 @D = sqrt((CityPosition( :, ones(1,m)) - CityPosition( :, ones(1,m))').^2 +...) B) ^# P+ f' W7 x# @4 n
(CityPosition( : ,2*ones(1,m)) - CityPosition( :,2*ones(1,m))').^2 );
W$ M! _' _" c* x* h: y/ U%将城市的坐标矩阵转换为邻接矩阵(城市间距离矩阵)1 K" V, H' _7 p' l
for i=1:pn
1 `: e4 g! F4 _$ Q path(i,:)=randperm(m);%构造一个初始可行解
" q: u9 f. y1 T) |end" O$ Q+ ^, S# D! X7 T9 Z. _; p. _' z
t=zeros(1,pn);6 _3 G5 y3 Q. M& H [; t
p2=zeros(1,m); K [; b# b$ g. a; Y0 }
" @6 u+ K; }8 M# M
iter_max=100;%input('请输入固定温度下最大迭代次数iter_max=' );
& |8 o) e/ C5 g: g; X, v2 Bm_max=5;%input('请输入固定温度下目标函数值允许的最大连续未改进次数m_nax=' ) ;
( y n9 s) y& P. W F$ e; Y%如果考虑到降温初期新解被吸收概率较大,容易陷入局部最优
: d6 n) s) h4 l( D# Z%而随着降温的进行新解被吸收的概率逐渐减少,又难以跳出局限
3 j% r3 |& a' u' A5 I%人为的使初期 iter_max,m_max 较小,然后使之随温度降低而逐步增大,可能
5 ?: ^+ P% C1 W" L' f%会收到到比较好的效果& z. r; A. H1 |# ], o. d* B6 J
. C( J$ i: `9 w1 i5 l; C- G5 ^2 h, rT=1e5;
. f. v1 K# a/ s/ O8 [N=1;5 V }) N u9 F! `
tau=1e-5;%input('请输入最低温度tau=' );
& z, x" H: M& ?( t; p%nn=ceil(log10(tau/T)/log10(0.9));9 \$ C+ @' k b1 a& K. ?
while T>=tau%&m_num<m_max
, M& s; D- {( }% v iter_num=1;%某固定温度下迭代计数器
% @8 [; s# }1 x3 q" E m_num=1;%某固定温度下目标函数值连续未改进次数计算器. g3 }" r3 l% E
%iter_max=100;
6 _& W2 j# c8 j& t, e1 P/ m3 w3 W) u3 ? %m_max=10;%ceil(10+0.5*nn-0.3*N);
" o+ x" j. {, {3 R. V while m_num<m_max&iter_num<iter_max
. Q- V0 a2 _% P' |& c %MRRTT(Metropolis, Rosenbluth, Rosenbluth, Teller, Teller)过程:2 Z' p3 U" [9 U
%用任意启发式算法在path的领域N(path)中找出新的更优解' s, ~6 N5 O: V. V2 g! B+ i7 N* ?
for i=1:pn
0 Y) O* u9 i+ ]9 U9 Y; L T% I Len1(i)=sum([D(path(i,1:m-1)+m*(path(i,2:m)-1)) D(path(i,m)+m*(path(i,1)-1))]);2 ]. e! {: e; U2 H, V& ]; J7 B# C
%计算一次行遍所有城市的总路程 3 ?/ s9 L% U) V* o
[path2(i,: )]=ChangePath2(path(i,: ),m);%更新路线
) z8 N Y+ t9 c, Z$ l4 u4 F Len2(i)=sum([D(path2(i,1:m-1)+m*(path2(i,2:m)-1)) D(path2(i,m)+m*(path2(i,1)-1))]);
" D0 f) r9 V8 Q' d end
- Y u$ N, S6 d. s$ Q# V/ T: b %Len1
- O8 f9 |5 k( p+ o2 x$ p& i %Len2
% P8 y9 b2 D# c y) l, n %if Len2-Len1<0|exp((Len1-Len2)/(T))>rand
8 L' [$ O# v& S+ B2 J R=rand(1,pn);4 S' _- B4 b$ T r @! U6 D9 Y8 I
%Len2-Len1<t|exp((Len1-Len2)/(T))>R
2 b- ~* H6 h$ f. m7 V) R if find((Len2-Len1<t|exp((Len1-Len2)/(T))>R)~=0)
! Q2 ?3 ~- U1 |6 H' I, P path(find((Len2-Len1<t|exp((Len1-Len2)/(T))>R)~=0), : )=path2(find((Len2-Len1<t|exp((Len1-Len2)/(T))>R)~=0), : );
, V: x3 f4 k5 J. c, @+ \ Len1(find((Len2-Len1<t|exp((Len1-Len2)/(T))>R)~=0))=Len2(find((Len2-Len1<t|exp((Len1-Len2)/(T))>R)~=0));
- A; b; b* v s/ L8 r# W$ v [TempMinD,TempIndex]=min(Len1);
) A: H$ M! Z1 k. ~' [ %TempMinD0 @. Q; |3 _+ R5 z% M& S( r
TracePath(N,: )=path(TempIndex,: );4 @8 K1 \% N3 t% `, S' E
Distance(N,: )=TempMinD;
# \" n5 f: x+ u6 B N=N+1;
1 Q# G" a: D! P, L5 x4 V' Q %T=T*0.96 p3 u' A" V% W. |, M. V
m_num=0;
3 a- }6 x; k4 y: t; g' v- y' D else
6 q& M9 a" n% M, e6 I0 R( Q m_num=m_num+1;
- X" {6 I5 h$ Q end
8 f) P& O0 N8 H% \) I iter_num=iter_num+1;
$ ^# R) l% d! a end
M) c' X c. Y+ V5 w T=T*0.9
' c+ y' A" B m# c! A m& u%m_num,iter_num,N
e8 O$ q" r! j8 }end 4 M& Q' M x3 S8 P2 M
[MinD,Index]=min(Distance);5 k2 E& ^0 S5 N2 N
BestPath=TracePath(Index,: );
) r; E/ a A, S7 g1 [7 Bdisp(MinD): j4 s* _! B, r1 p# C% A$ I
%T1=clock) {3 \6 z! J& f- B+ t
2 a9 r7 k7 N) c7 e7 m6 z% l2 S0 Y5 Z
7 s! f) q1 k& h# x%更新路线子程序
( c# Q+ ~+ \2 ?& Ifunction [p2]=ChangePath2(p1,CityNum)6 T) W2 a( J7 D* O# I/ Q+ S) F5 d0 O$ v
global p2;7 x. {6 A% Q% }4 t
while(1)2 T6 @$ C" {- ^* h6 e+ V
R=unidrnd(CityNum,1,2);3 l" @4 A" q, E3 z2 P' y7 I+ r
if abs(R(1)-R(2))>1# W! k5 c& o4 s/ d* D" g
break;
`9 ]# i; V, T" o end
4 d( z* a9 @* {& oend5 C3 Z: [" w* n r& R, ]7 o* r
R=unidrnd(CityNum,1,2);
7 p" D8 l8 B1 aI=R(1);J=R(2);2 K* N* c) `! x/ D, o2 }& {
%len1=D(p(I),p(J))+D(p(I+1),p(J+1));
w9 z3 l8 r* l% o3 ^%len2=D(p(I),p(I+1))+D(p(J),p(J+1));( I3 m8 f# q3 u0 H6 J' C. B( J
if I<J9 w3 ^. Y# q* |( G) }
p2(1:I)=p1(1:I);
# M/ ^! ^! y# F( d( @ p2(I+1:J)=p1(J:-1:I+1);/ D& E* L0 s4 J
p2(J+1:CityNum)=p1(J+1:CityNum);3 I" B/ q) m5 w
else [3 a/ E4 u& d* z" W5 z
p2(1:J)=p1(1:J);; X4 x# w9 ?% P) l" @' G
p2(J+1:I)=p1(I:-1:J+1);% f; c( X: y! X8 C. e
p2(I+1:CityNum)=p1(I+1:CityNum);
* b) C# W& [! @; g) P) V! M5 Wend& V/ z1 N' P6 {% m, F
' b9 ?6 c- a" u# v4 ~( {六 遗传 算 法程序:
" F/ d( K7 n$ t7 k6 l6 U 说明: 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作!) n& v6 J6 F5 i2 ]9 g% _5 A# K' ?
8 }+ e7 C7 n% d9 v9 U5 a! X Ifunction [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options); Q2 f: K$ G u6 B+ u
% [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation)
4 G' S+ e! v1 ~. ^; _" m% Finds a maximum of a function of several variables./ v( l4 M5 N: M2 l1 C% k ~
% fmaxga solves problems of the form: 1 y ]9 ^( J+ [3 y/ K
% max F(X) subject to: LB <= X <= UB $ H1 A% ~ ]$ \; P; J7 S/ u) V
% BestPop - 最优的群体即为最优的染色体群) \5 c0 t9 `& ?! }
% Trace - 最佳染色体所对应的目标函数值4 l* `7 q. M. L( x. C2 n3 m h" B
% FUN - 目标函数
: u3 g, z1 _) |% LB - 自变量下限
2 a" w/ D8 [* e) q( M' j% UB - 自变量上限# S8 n4 s; G# d2 z$ { v
% eranum - 种群的代数,取100--1000(默认200)
$ D0 V& z& n3 E% \" r% popsize - 每一代种群的规模;此可取50--200(默认100)* L$ W8 z, x2 I9 |- D( Y
% pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8)
! D! b8 g" W+ ~8 a- V% pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1)
- E l; ?0 B% `/ x8 ^( X8 O" i% pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2)
1 B* Y) i8 `0 x$ H% options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编
$ I% ?+ d6 i1 {/ B%码,option(2)设定求解精度(默认1e-4)
8 p" I3 N* U( k: Q8 u/ s' ]; z%
# a( t7 E' j P3 Q. d) ^% ------------------------------------------------------------------------
5 A; I) D7 S) D C
/ a5 t: H( l8 M8 V" DT1=clock;/ k$ r2 ?# w2 H% o& @
if nargin<3, error('FMAXGA requires at least three input arguments'); end( x1 M. B, e: [2 X) a
if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end& d1 {& d$ f3 h5 c- b ~, d
if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end4 D/ N, ?, w$ l
if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end
' u2 H# {6 Q3 |: t7 }if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end
7 z" p- ]/ X S% c8 P: {if nargin==7, pInversion=0.15;options=[0 1e-4];end- k% G# _9 C' D* y* Q
if find((LB-UB)>0)- I$ k8 w3 ^. I$ {/ j- @% s- U) A
error('数据输入错误,请重新输入(LB<UB):');* }- }7 E! ]7 ^# y: g! y
end
) H1 F& E* v1 R M7 i- ms=sprintf('程序运行需要约%.4f 秒钟时间,请稍等......',(eranum*popsize/1000));: l8 R) T5 E! P( ` z
disp(s);3 w5 R$ J K! R: A7 b/ o# G& Z% T
6 r7 C' @' o" E6 |% z# [global m n NewPop children1 children2 VarNum
7 k% Y% f: }# \" K" i4 ^
, }, ~9 k: V3 n/ a* D. n! Gbounds=[LB;UB]';bits=[];VarNum=size(bounds,1);
0 E5 @) ~! Y. ]7 ~) ]8 p( dprecision=options(2);%由求解精度确定二进制编码长度) _8 L0 z$ s3 O2 v8 b- e% h
bits=ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间" K7 y! x3 C# j: h2 ^' N
[Pop]=InitPopGray(popsize,bits);%初始化种群/ A0 Q# y1 _8 ^2 ^
[m,n]=size(Pop);) i- l1 L: V7 b4 ?. }/ N
NewPop=zeros(m,n);1 a6 l5 e Y! P" a3 K
children1=zeros(1,n);3 C c2 @: ^* f" ?* C) O9 W- o
children2=zeros(1,n);
- k1 o1 N9 m7 Q1 gpm0=pMutation;9 r* S1 R4 l: [4 }6 ^4 q6 X
BestPop=zeros(eranum,n);%分配初始解空间BestPop,Trace
; N) ]3 d- R6 @" {* [Trace=zeros(eranum,length(bits)+1);
: I4 W+ u5 h+ \; ?i=1;
6 f6 q3 E/ A3 Jwhile i<=eranum5 A( m9 n2 g, ^9 U8 |7 U# M+ L# {
for j=1:m6 j. G2 m3 x& l0 C. a5 y
value(j)=feval(FUN(1,:),(b2f(Pop(j,:),bounds,bits)));%计算适应度6 N# g! ~9 i) p4 z/ v
end
- E5 b# p/ G" T$ X% K" q8 Y# r [MaxValue,Index]=max(value);
2 a7 h) i8 v" Z- b$ W5 V2 u/ |& u, S BestPop(i,:)=Pop(Index,:);
% s, C u7 R* ^" s8 a6 l' v Trace(i,1)=MaxValue;* W3 y+ i: Y6 u6 h$ G. N
Trace(i,(2:length(bits)+1))=b2f(BestPop(i,:),bounds,bits);/ j% D. W0 S, s4 s% X& I" u
[selectpop]=NonlinearRankSelect(FUN,Pop,bounds,bits);%非线性排名选择. z; c8 p. Q1 h, A, S9 n
[CrossOverPop]=CrossOver(selectpop,pCross,round(unidrnd(eranum-i)/eranum));
( G+ t* c0 K* ~0 ~( g: P! {%采用多点交叉和均匀交叉,且逐步增大均匀交叉的概率
. |; O* ?' ~ q0 j %round(unidrnd(eranum-i)/eranum) L$ [' R* [$ U% x$ e9 ~4 W
[MutationPop]=Mutation(CrossOverPop,pMutation,VarNum);%变异
' X! i; Z. }7 C9 O [InversionPop]=Inversion(MutationPop,pInversion);%倒位
1 }9 _0 }' G+ |- B4 \ Pop=InversionPop;%更新( r9 t# E! f) ]2 B/ e& ~
pMutation=pm0+(i^4)*(pCross/3-pm0)/(eranum^4); ( ?. L) V" Q/ q' U; i
%随着种群向前进化,逐步增大变异率至1/2交叉率
7 H4 L7 o& |/ E5 d5 V. p, j( o* m p(i)=pMutation;
& S( Z! n# P2 e9 q- P i=i+1;# E( B( D m( T5 F; \$ ?
end( m* ^, k5 p/ i1 p) ^
t=1:eranum;
- t7 R+ x! b+ Tplot(t,Trace(:,1)');( p- H- ~! W/ [: {
title('函数优化的遗传算法');xlabel('进化世代数(eranum)');ylabel('每一代最优适应度(maxfitness)');
6 b. T ^, o0 u- Q[MaxFval,I]=max(Trace(:,1));0 L( G; D1 U0 @0 G3 ]0 Z3 j' n! y" b
X=Trace(I,(2:length(bits)+1));
3 ]* V# K, e: Y9 C7 \: Bhold on; plot(I,MaxFval,'*');
! m* b3 B) I% f; v9 b1 ^4 Stext(I+5,MaxFval,['FMAX=' num2str(MaxFval)]);8 I6 _, l4 o# G& ]2 _6 k* [
str1=sprintf('进化到 %d 代 ,自变量为 %s 时,得本次求解的最优值 %f\n对应染色体是:%s',I,num2str(X),MaxFval,num2str(BestPop(I,:)));6 z" m6 e- M. p
disp(str1);
. B( [6 [; v. }. \. X( C J% S4 ]%figure(2);plot(t,p);%绘制变异值增大过程2 F; P W( K1 o- M; r7 z
T2=clock;1 D& I( ?7 U* d+ q8 X, O
elapsed_time=T2-T1;
5 R8 P+ O6 r6 P1 h! Eif elapsed_time(6)<02 O) J9 u; {9 o4 n1 B8 A7 y1 x
elapsed_time(6)=elapsed_time(6)+60; elapsed_time(5)=elapsed_time(5)-1;
' w: T) C, v3 a' n9 f; T5 Aend' ^+ I' w+ i) _3 O |. L
if elapsed_time(5)<0- B2 c8 f7 h. h0 V; t& s* `2 M1 M! m
elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_time(4)-1;' B" v3 Q% z) k, l
end %像这种程序当然不考虑运行上小时啦2 U- _/ j9 |; V
str2=sprintf('程序运行耗时 %d 小时 %d 分钟 %.4f 秒',elapsed_time(4),elapsed_time(5),elapsed_time(6));
5 N6 b! ?! o0 L) B& ddisp(str2);
7 w+ @# T0 W5 I3 X# X8 S
% X& }1 R1 _1 L6 p- e0 i6 ?9 J: p5 B0 i
6 z( S* o. y' f* a%初始化种群
# F) f3 A4 E) o/ a+ e%采用二进制Gray编码,其目的是为了克服二进制编码的Hamming悬崖缺点! G: P6 X! x! i8 P* q
function [initpop]=InitPopGray(popsize,bits)
* }( T# R, |3 u) c* X: dlen=sum(bits);9 R( D* g8 ]4 l3 b5 D2 c" P
initpop=zeros(popsize,len);%The whole zero encoding individual* ^) [; f0 n3 T9 ^, F+ a
for i=2:popsize-1
6 x6 i A7 B7 g9 k7 Z2 Q" ~' {7 S9 H: B) J pop=round(rand(1,len));
) x- \% ^6 ~5 u pop=mod(([0 pop]+[pop 0]),2);& K0 o. z7 K7 p1 B
%i=1时,b(1)=a(1);i>1时,b(i)=mod(a(i-1)+a(i),2)
8 ]. v: _# `% R: I; W, O %其中原二进制串:a(1)a(2)...a(n),Gray串:b(1)b(2)...b(n)8 Y) P) h: w! `8 W- q& R
initpop(i,:)=pop(1:end-1);: A: d$ C1 n8 U& v; [. {7 }
end* ^3 F& a8 u9 k; W( ?5 u6 H
initpop(popsize,:)=ones(1,len);%The whole one encoding individual6 s; q3 g; |+ F8 X0 b
%解码
4 |) S3 r. |& F* [4 b
$ n1 O/ D& z" h+ Dfunction [fval] = b2f(bval,bounds,bits)
* ?8 e" I0 q( T3 f; Y* T# D7 E3 P% fval - 表征各变量的十进制数
8 c. C3 o+ ]/ {* D6 H% n% bval - 表征各变量的二进制编码串, ]) K0 ]) Q8 A+ \, q
% bounds - 各变量的取值范围
" R$ O% _* d* Q2 s O, }( ~" F: F% bits - 各变量的二进制编码长度3 U- ]+ @6 W- t/ d' T+ ]
scale=(bounds(:,2)-bounds(:,1))'./(2.^bits-1); %The range of the variables' R, K: Q) v; X# K( t. E/ _
numV=size(bounds,1);) i7 l3 m4 h- I' b. }7 d k
cs=[0 cumsum(bits)]; % x2 n/ H1 Q$ n7 Z# b
for i=1:numV
& s; g4 K& O% n" D4 f a=bval((cs(i)+1):cs(i+1));+ C$ z( f% F/ { ~" Q
fval(i)=sum(2.^(size(a,2)-1:-1:0).*a)*scale(i)+bounds(i,1);
4 E- p$ q, G, ^" E2 N) m; Pend" x3 r* B; U( b" ~/ v9 f B! r
%选择操作
/ {1 ?, g. [1 g, O$ l5 z5 h%采用基于轮盘赌法的非线性排名选择2 J1 k" N2 B; F) F, w- u& h
%各个体成员按适应值从大到小分配选择概率:
3 X. p! Y4 q7 r* n%P(i)=(q/1-(1-q)^n)*(1-q)^i, 其中 P(0)>P(1)>...>P(n), sum(P(i))=1 j$ i' r+ m) k1 P% q C1 b
% x% V& Z, H3 u9 ~. P7 cfunction [selectpop]=NonlinearRankSelect(FUN,pop,bounds,bits)& k$ u4 j4 E( X* t
global m n, U7 I) [% b( G W* O
selectpop=zeros(m,n);" P+ ]# D& n( s. u- @
fit=zeros(m,1);
- A Y7 ?4 k5 _! e2 Ffor i=1:m: B1 e4 w, l8 K8 @% J; {. ]
fit(i)=feval(FUN(1,:),(b2f(pop(i,:),bounds,bits)));%以函数值为适应值做排名依据; i0 H* E" J( @4 ?
end$ f) ^* D5 b) f8 ?& F4 l
selectprob=fit/sum(fit);%计算各个体相对适应度(0,1)
2 G0 Z; Q4 j; C1 {q=max(selectprob);%选择最优的概率. u8 N0 {6 ^& k. ?; f; n' K- D
x=zeros(m,2);
, L8 V% a% h$ O& [7 r. [x(:,1)=[m:-1:1]';- B# [$ P$ Q/ ~; X ?- r/ o' ]
[y x(:,2)]=sort(selectprob);
! F5 i9 t4 x) x) s1 j$ Q7 H$ Gr=q/(1-(1-q)^m);%标准分布基值6 C j8 o5 `- R0 m8 d
newfit(x(:,2))=r*(1-q).^(x(:,1)-1);%生成选择概率. ~+ y( Z% J% |$ q, [! v) N, C
newfit=cumsum(newfit);%计算各选择概率之和+ O0 H* p! j: t
rNums=sort(rand(m,1));$ X7 ^1 i. H) Y7 D( s* {6 Y2 D
fitIn=1;newIn=1;- d: J" e g7 r# Y; W/ b3 v
while newIn<=m& `8 e9 T7 i9 t* x! J5 f' D
if rNums(newIn)<newfit(fitIn)
* g9 Q5 T) j$ J' E selectpop(newIn,:)=pop(fitIn,:);
: }' }: I( a* A# K/ B newIn=newIn+1;2 A+ h Y/ v. Z$ [( R: [
else
% L9 z. e4 Q- L5 `* a5 [" i( Z* S fitIn=fitIn+1;1 I8 {# }2 v" F+ d7 ^: W
end
8 ]' T: W' N2 S. _end
4 n% ~' J$ \- w6 ?%交叉操作
; S+ X9 v$ M# E0 ^+ _' Vfunction [NewPop]=CrossOver(OldPop,pCross,opts)# J" }! F- F V C2 a
%OldPop为父代种群,pcross为交叉概率
' P0 Y% A* |% ^; W: zglobal m n NewPop $ L/ n" Q6 L6 u; A( K- }
r=rand(1,m);# m. w- a4 ]4 k. T1 f( L
y1=find(r<pCross);
9 E2 N5 j: T5 G9 j! _! b7 R) Ry2=find(r>=pCross);
1 _6 p# m% | w8 v( J1 Z# b8 alen=length(y1);9 \! i0 o0 [3 K, B0 \1 y. a: A
if len>2&mod(len,2)==1%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数+ R& D$ x+ K' a# G, k! B1 ^7 D" F
y2(length(y2)+1)=y1(len);
. y2 l, o5 N+ b" S+ s y1(len)=[];
3 ?! p2 b3 ^$ A' Y; @' fend6 j* v0 p) r/ S" Y* m$ D( F, S- u/ j( u
if length(y1)>=2: c+ \' e% f% q- ^& Q/ |- O6 m
for i=0:2:length(y1)-21 n& m/ @, T7 |. N
if opts==0
8 ?0 m7 H9 s% _7 I2 f [NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=EqualCrossOver(OldPop(y1(i+1),:),OldPop(y1(i+2),:));4 O5 U& ?' z! }6 l' u& ^9 q! M
else
9 S5 M% W: B0 ~3 j, B# @ [NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=MultiPointCross(OldPop(y1(i+1),:),OldPop(y1(i+2),:));
" d2 ?6 \ S. H, ?& | end
) Z( l# ~0 c2 I/ s% ~& _ end
$ K' E) m6 }* v6 p* y# G4 }end# V% K" ? r3 X, O3 z- |- W. t
NewPop(y2,:)=OldPop(y2,:);. _0 z; d7 c, v' K6 l0 n6 Z5 U
0 O& N! [+ \9 z0 P2 f9 H%采用均匀交叉
& I& ^" r" M2 t' U3 @7 A5 Cfunction [children1,children2]=EqualCrossOver(parent1,parent2)1 r9 \$ J6 q- _5 A; L$ q
! x h5 @. C% p# t, h R, M
global n children1 children2
7 W8 J5 T! r( E& e& y1 ehidecode=round(rand(1,n));%随机生成掩码' j m+ e! n2 b* c
crossposition=find(hidecode==1);% p! @# n6 q3 O
holdposition=find(hidecode==0);: H8 D2 Q2 N2 y: Q) |; j
children1(crossposition)=parent1(crossposition);%掩码为1,父1为子1提供基因
: e& [3 }3 X+ I3 N1 |7 ochildren1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因
0 G& {# V. |7 _+ ^# V* achildren2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因
! V! y9 G* z' _; K' c8 N4 P) {children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因
2 u" l% ^; y% B- ?" n& F1 L1 ^ M: H6 K; q% r$ ?7 G4 |
%采用多点交叉,交叉点数由变量数决定
/ |+ L( [& ~( t# t: v, a1 I
9 c8 H! l1 J$ C- y Pfunction [Children1,Children2]=MultiPointCross(Parent1,Parent2)
0 p- v( ]3 y g: V- ?. ?7 T
9 J4 U: a+ C7 C* u/ Xglobal n Children1 Children2 VarNum
" e ?7 E8 M1 Q7 E0 t' _, HChildren1=Parent1;2 X4 f. z/ l" X- F/ h6 [6 c
Children2=Parent2;! V0 f5 F7 }' g
Points=sort(unidrnd(n,1,2*VarNum));
4 k' Q) x& j- b/ m3 ~for i=1:VarNum' w7 ^5 {6 y1 t5 y, z
Children1(Points(2*i-1):Points(2*i))=Parent2(Points(2*i-1):Points(2*i));! F3 v& g m8 r5 `
Children2(Points(2*i-1):Points(2*i))=Parent1(Points(2*i-1):Points(2*i));- u0 Z2 i- h ^, d6 y$ n
end
3 O# y! Q/ T7 K. W9 |* ]4 B+ J$ p5 B
%变异操作$ S' _' U, ~( h8 T5 M6 ~
function [NewPop]=Mutation(OldPop,pMutation,VarNum)
8 f W7 u$ b- [( e) j
. h6 i% Z' q$ Q+ Q- nglobal m n NewPop
5 x0 T) ?/ V3 [. |3 f) T Fr=rand(1,m);
; h6 w" V% J: `+ X+ j0 [. Hposition=find(r<=pMutation);1 e; U& u. b9 A2 h# h" X
len=length(position);3 {* Q" [ j! ^! }: h
if len>=1' E" b- r6 ~6 I1 I1 }, i
for i=1:len* K( f8 L3 Y; X! ]" s/ s# }
k=unidrnd(n,1,VarNum); %设置变异点数,一般设置1点# e) [6 s) E& Z0 Z; e
for j=1:length(k)
5 O! }( p# D& E9 \9 ? l/ [ if OldPop(position(i),k(j))==1; F. z" Q# G7 Y4 `- Q* I, Z
OldPop(position(i),k(j))=0;1 Q* Q' [. L8 `
else
- e2 G5 p7 P: I( ^8 O! s OldPop(position(i),k(j))=1;1 |6 k5 L% _8 V7 s/ M
end2 I8 N w& [5 V
end
# }) Y3 O4 D8 i0 h; @& Y( c' B end) P9 y7 k1 h: w4 X7 [1 ]" S: Q
end/ x7 e N7 _' A9 X+ w' B8 Y
NewPop=OldPop;
$ N9 j& b5 D) `8 o: E# P4 E0 S0 J- A+ `1 s1 z# {. z5 F
%倒位操作$ N$ x* q* j5 j2 \6 Q
, R1 k8 ?& l+ u( j* K4 p9 ~+ Efunction [NewPop]=Inversion(OldPop,pInversion)5 J, f/ K U5 Z7 O0 T
5 [$ b$ W$ ]7 R1 t2 d% c" t' S# xglobal m n NewPop
7 P d3 M! t8 {- b7 l& CNewPop=OldPop;. E1 {, |6 B1 G0 O* L- m1 \% n
r=rand(1,m);0 a5 S& r8 O* g( C6 d. R
PopIn=find(r<=pInversion);
3 X1 z T1 ]# b0 N3 V$ `% [4 P+ Blen=length(PopIn);7 Y0 T' c; Z) S- ~( n- F/ J
if len>=1
- a6 ^. _9 P: X: f- S6 m for i=1:len1 R/ ?* o7 e4 \! z+ L- j0 ^* o0 ^
d=sort(unidrnd(n,1,2));
9 V- U. d) D3 ]7 k if d(1)~=1&d(2)~=n
6 U' s; q8 d' o9 e N( R; w% z* x NewPop(PopIn(i),1:d(1)-1)=OldPop(PopIn(i),1:d(1)-1);
. C# z3 @6 u7 Z8 p- c1 _! k" ~- r( r' T NewPop(PopIn(i),d(1):d(2))=OldPop(PopIn(i),d(2):-1:d(1));
, {5 T5 ]- @0 I2 i0 f1 Z- v NewPop(PopIn(i),d(2)+1:n)=OldPop(PopIn(i),d(2)+1:n);
" c% g- v5 O! n6 w end& Z6 T% d$ P4 o$ Y: r: T) r
end
5 l& a9 O5 j! Iend
" E* A" f E* f3 k$ A" c
+ C7 P# u/ D* [0 X- \7 c1 R七 径向基神经网络训练程序
* \2 T, {/ o5 t" R! b8 S+ u) \+ k4 i; q- v$ Q7 i
clear all;
/ C$ y; j6 e2 j6 T& ~6 C8 _$ yclc;0 \) k- y9 y6 W/ x/ p4 f* i
%newrb 建立一个径向基函数神经网络
$ C2 h4 l* D F) p1 b4 O$ _p=0:0.1:1; %输入矢量
3 t0 F, W3 z' c+ Vt=[0 -1 0 1 1 0 -1 0 0 1 1 ];%目标矢量5 N5 V. ^0 e8 S. B+ U) y
goal=0.01; %误差
- u" T1 c7 o) V2 M. n# fsp=1; %扩展常数- h2 B, L. R1 Z, {7 e: a7 ?# j
mn=100;%神经元的最多个数
* i0 i6 ?( o% L+ H' ^df=1; %训练过程的显示频率
- ^- s' m% P/ ?- U1 ^8 \# j" G0 z6 p i[net,tr]=newrb(p,t,goal,sp,mn,df); %创建一个径向基函数网络
; T" u$ Y7 \- R* Q9 V2 s6 z% [net,tr]=train(net,p); %调用traingdm算法训练网络
6 H- b" N3 w9 {7 {%对网络进行仿真,并绘制样本数据和网络输出图形
* H6 v2 B) W T) g* u% x3 \! w5 AA=sim(net,p);, F0 y+ C: o( d. G3 Y
E=t-A; K6 }% I7 S8 H# v
sse=sse(E);
5 p2 v" @0 D# [6 v* Ufigure; 8 E: e2 U3 |! H, s2 ?: }! L
plot(p,t,'r-+',p,A,'b-*');
/ U) ~! k+ a9 g- K7 a& vlegend('输入数据曲线','训练输出曲线');
! V- z( [- y" N2 @% v9 Decho off
" H# D7 q/ E% B' y! x
) s; L9 Z* E) L% w% z6 `+ N, S说明:newrb函数本来 在创建新的网络的时候就进行了训练!0 G! Z$ D- O% N# F
每次训练都增加一个神经元,都能最大程度得降低误差,如果未达到精度要求,
, K' N q8 D- R, F那么继续增加神经元,程序终止条件是满足精度要求或者达到最大神经元的数目.关键的一个常数是spread(即散布常数的设置,扩展常数的设置).不能对创建的net调用train函数进行训练!
9 R0 j7 D- m: d( U; Z7 y4 A1 q" I! m7 H. _" z6 s1 a
& c; R7 ]4 U* b; I, F, y9 [6 A) A
训练结果显示:
- g8 u2 v/ B+ h% i3 GNEWRB, neurons = 0, SSE = 5.0973
" H Z! n) r0 rNEWRB, neurons = 2, SSE = 4.87139( U% J% y5 ^' s- m2 I/ d$ e3 g
NEWRB, neurons = 3, SSE = 3.61176
7 r: ?7 G) Q4 A/ ANEWRB, neurons = 4, SSE = 3.4875
+ Q' e+ d: }+ V! y" D- pNEWRB, neurons = 5, SSE = 0.5342179 v& }/ Q. L* c$ e
NEWRB, neurons = 6, SSE = 0.51785
0 G! g+ k- t+ qNEWRB, neurons = 7, SSE = 0.4342590 ?: s. n6 w% }5 k
NEWRB, neurons = 8, SSE = 0.341518 v3 `! j) D: N8 i# u1 ?' {* [
NEWRB, neurons = 9, SSE = 0.3415197 K# L! j* R* [
NEWRB, neurons = 10, SSE = 0.002578324 A$ L9 A' j/ `7 G1 {; V
" q+ u/ _7 w* }8 p# N
八 删除当前路径下所有的带后缀.asv的文件' [3 ?* Y. s0 E2 p4 }5 P
说明:该程序具有很好的移植性,用户可以根据自己地
. a, C% Y/ r z' B6 |5 _要求修改程序,删除不同后缀类型的文件!
! a W( z6 y, R& E. I, ^2 Y; rfunction delete_asv(bpath) - f1 g" b o+ f& T* {) [3 k p/ W
%If bpath is not specified,it lists all the asv files in the current7 [* K0 [2 B4 a; J1 S& T
%directory and will delete all the file with asv
- w6 H* T' w3 _' d* r% Example:
( F' G& `- |, A( |% delete_asv('*.asv') will delete the file with name *.asv;
8 v% W! `2 {( G. g$ | K% delete_asv will delete all the file with .asv.
& V8 h. ]( z! H3 k* ?9 y3 U! c" `8 V: x
if nargin < 1
9 Q+ G: r3 g# H+ j/ }%list all the asv file in the current directory
: _" I3 E& x& V/ q4 D9 K. e; Z" q& C files=dir('*.asv');
( O) A6 i6 e( Ielse) p; j) w9 v4 G
% find the exact file in the path of bpath7 T" j h+ M7 W- g/ `
[pathstr,name] = fileparts(bpath);7 h& c! o2 }1 g1 [9 {1 Z
if exist(bpath,'dir')7 B k) k1 O3 e2 |' x7 Q; U
name = [name '\*'];
. Y; o( |! F: V- a, R; w end
+ n6 }0 g; O+ p$ [1 S ext = '.asv';, U3 s' \; i0 ]5 e; l6 o
files=dir(fullfile(pathstr,[name ext]));
9 c3 S9 c! \! X8 O! P6 Uend9 a2 g# z) [! W) X
2 ~2 I5 Q7 I0 t) _
if ~isempty(files)/ X. A7 w3 g& y% W+ V. y% O
for i=1:size(files,1)
: Y8 q) w+ o4 d' i/ Q& M title=files(i).name;
' K- x1 I) L) v( z" Q% e8 y7 E$ a delete(title);
P7 f3 ?# z; @' |, Y end
. F" l6 {: R3 u6 g, rend' g# c' p" P1 [) E1 s4 G
9 R7 i% ]0 l: K5 v7 w) c8 U5 G5 X& g J! P: q
同样也可以在Matlab的窗口设置中取消保存.asv文件!6 d- p- ~' h6 |" |$ ?$ ?3 d. a
|
zan
|