QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3978|回复: 6
打印 上一主题 下一主题

实二次域(5/50)例2

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 14:05 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:59 编辑 8 [+ c0 z* c; w& C. F( Q3 p' Q
    1 L& A7 [  d) l1 T* ~
    Q5:=QuadraticField(5) ;
    . ~1 Q1 x) E9 {; L9 }Q5;* j. ]* g# g1 v! N1 P+ W
    Q<w> :=PolynomialRing(Q5);Q;8 E4 ~" R  N2 Y+ M# Y( \1 F
    7 n7 r; a6 O& c) s- }
    EquationOrder(Q5);
      M& H2 T/ I  @% R+ y3 h+ B  tM:=MaximalOrder(Q5) ;2 O; a8 P0 D, m3 u3 l; \
    M;
    + F' f7 |( l, {- P; n. \& mNumberField(M);4 @, t; L4 J# B$ a
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;! x. L, M* N( [  |) B& }7 J3 Z
    IsQuadratic(Q5);IsQuadratic(S1);IsQuadratic(S4);IsQuadratic(S25);IsQuadratic(S625888888);
    1 |! U* `4 Z$ xFactorization(w^2-3);
    0 G( D2 I; g, x1 a0 tDiscriminant(Q5) ;
    ' k2 r9 G8 u/ i, dFundamentalUnit(Q5) ;
    / p/ w/ T7 i* G! I# ^& G# z+ U) RFundamentalUnit(M);
    , h! F, ?5 k( g  Q* RConductor(Q5) ;
    % x% I7 Z0 ^- c7 cName(Q5, 1);2 _0 M/ t- t+ H3 p
    Name(M, 1);& d8 O2 t) S" B# z' i6 G
    Conductor(M);; y3 w: Z0 Z5 Z( H
    ClassGroup(Q5) ;( b% e/ b. A. t. z" y
    ClassGroup(M);/ T7 k/ D2 w6 k( b; ~( C  M# V. w
    ClassNumber(Q5) ;
    & f6 i$ F, E1 f$ G% jClassNumber(M) ;
    ' Y, j" {# c4 q0 w6 c: r- f$ r: _; o' @+ `9 q" x3 y+ h; S
    PicardGroup(M) ;) \; j2 k. L" I, X! t/ h8 B
    PicardNumber(M) ;$ u3 d) r4 A* N! _; ^$ R6 w, Q

    7 `9 T9 @& O* e% H. @6 F' I6 f* i. Q) d0 Z9 h
    QuadraticClassGroupTwoPart(Q5);) r" Y3 d: b/ K+ ?0 F0 z* z4 E
    QuadraticClassGroupTwoPart(M);
    / C6 W3 n; s1 E; O" O3 L7 B: c8 N! I: `3 Z% X+ L2 Z
    0 v) a, t' b) t( V
    NormEquation(Q5, 5) ;
    0 v! N) o+ R) n! U3 }4 D3 w, HNormEquation(M, 5) ;- p4 P+ {% m) Z& x
    3 A7 o0 U: {' s6 t; G: `4 b

    8 ]4 J& [6 W) aQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field
    2 ^  i- i1 f0 iUnivariate Polynomial Ring in w over Q55 V3 ?5 ^. W, R  K
    Equation Order of conductor 2 in Q5
      h; T4 c! ?/ J$ V% U3 A$ s# JMaximal Order of Q5
    # C% @: [$ ^8 v4 FQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field
    # z) h, j+ |2 u. ]" KOrder of conductor 625888888 in Q51 ?% p- U3 J) a. j
    true Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field
    : m7 i& Z  P9 H) strue Maximal Order of Q57 ^, x7 k% ?2 l8 ^/ d
    true Order of conductor 16 in Q5" b$ ]4 B9 A( Q0 r, G, A. K
    true Order of conductor 625 in Q58 ?4 h: }4 n0 t  V1 I3 v  s
    true Order of conductor 391736900121876544 in Q5& {( K2 `3 r( H
    [+ D3 U: e; l% v& `7 j
        <w^2 - 3, 1>
    9 W! Q/ ]% O, \3 p( V4 E" e& F2 L$ C]
    & j# T1 j+ h1 K+ y, `5
    ( K$ N0 b/ e  M8 U/ p: G1/2*(-Q5.1 + 1)5 s0 o# f4 ^9 g: D1 ^
    -$.2 + 14 Z! j% ^+ g8 [$ u# y. P; g! ]
    5
    3 G4 o+ {$ J* \  h$ ]- ~Q5.1: `% V' F5 T' {: U' o( \4 x3 g9 `
    $.2% y$ Q- Z: Y" R( q. H4 p
    1& I, P2 h& o. N1 n1 V2 y- y( }
    Abelian Group of order 1# t* ?4 V: ]& t9 M4 `
    Mapping from: Abelian Group of order 1 to Set of ideals of M" E2 c/ D7 u% a2 N6 @/ j
    Abelian Group of order 1
    " I6 u5 k  @4 wMapping from: Abelian Group of order 1 to Set of ideals of M
    # I) ^& A( f$ ~8 s1/ x' R$ V0 k3 p, @% Y
    1
    6 ]# n) Q) s4 }# G8 E; |* {3 AAbelian Group of order 1' _+ n4 d0 l! K- R1 e3 x& }- ?: Z
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no7 @6 q# a1 {, z. t+ Y* e' L, ?$ h7 p
    inverse], ]4 {- M+ \0 P# x" K0 j
    1
    % v6 n$ Y. k* @  w' j5 }Abelian Group of order 1" N  n8 n% m! _/ S. Q+ h
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant* J  a% [- S# Z* {5 c/ n
    5 given by a rule [no inverse]9 Q2 }0 `& Y  A& P& V0 g8 Z/ x' }; q
    Abelian Group of order 1
    $ o/ s; p- k/ j5 j1 n0 \; Z$ EMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    + O6 Z: I5 P: ]  o2 q" \0 w1 ~0 K5 given by a rule [no inverse]
    ! b+ o& E" M$ P1 h. Dtrue [ 1/2*(Q5.1 + 5) ]
    * V3 S0 ~7 \+ V% wtrue [ -2*$.2 + 1 ]3 ~, H2 O+ c, G* l2 J1 t& H( G
    " X; t' O" g% G; v- ~0 g8 f
    1 N6 i5 S# p2 J& h9 K

    ) \2 o+ E3 u- J$ a: E! Y! @3 J! u4 T1 x, {+ M# K2 y2 {& w
      |5 V5 S( l* j  C& l+ o$ C' l
    1 g* I/ G% s' u  Y1 H
    ; o# \  o" ^, U/ M* J: h4 i
    1 |3 k5 t) k' k, H9 V5 [, [

    2 n, n+ e! J( r6 v6 h1 Z( U. z: N# v. L" ^9 U

    % X( Y  Y1 O; |8 S' I# Q6 }==============6 b; z% }& T+ |# `( O1 a- R

    ; N# A% W$ Z2 U$ x; X- ?0 S; L7 fQ5:=QuadraticField(50) ;
    / m$ u, o. ?! k8 s5 p4 j& ~" M2 SQ5;
    6 R/ q7 D" [& D$ a: n. M8 S
    $ R5 M+ y3 f8 QQ<w> :=PolynomialRing(Q5);Q;
    * E8 R0 T6 S% U$ m8 {7 @EquationOrder(Q5);5 s6 V6 T, [1 z/ [0 \0 W# @
    M:=MaximalOrder(Q5) ;
    # j! P- X0 d0 p6 y/ rM;
    2 |' p9 M7 T# M5 J! fNumberField(M);
    & ?8 H/ F* L! k/ sS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;  z( F$ ^6 `) l9 u
    IsQuadratic(Q5);- F( o6 M  s3 }
    IsQuadratic(S1);$ u3 I$ X$ a: B
    IsQuadratic(S4);
    # B5 b' l, A. D9 f0 u$ HIsQuadratic(S25);, T$ |9 J# B/ D
    IsQuadratic(S625888888);$ {7 W1 E, X/ m' c
    Factorization(w^2-50);  9 J+ s! N! X, v- x9 `/ ]! A2 A
    Discriminant(Q5) ;
    ! W6 G' o. a5 zFundamentalUnit(Q5) ;7 i6 H3 |- p" y* e+ I
    FundamentalUnit(M);1 t+ K) H3 R; }8 T$ T
    Conductor(Q5) ;
    + Y' E/ [+ T0 S! u3 [: C% H7 S/ i+ q* t/ s1 U
    Name(M, 50);
    " u8 o  |7 H* qConductor(M);. H& G! x4 }& j/ f
    ClassGroup(Q5) ; . \9 g5 h! Z; }3 @' O- L- X( ^
    ClassGroup(M);* M* j3 X, T/ d/ o
    ClassNumber(Q5) ;* A( e. a/ I# f$ H" M  [
    ClassNumber(M) ;
    1 r$ C9 ]( S- H. KPicardGroup(M) ;
    & C& W4 W* K' p' {3 G7 w$ y: vPicardNumber(M) ;
    + w1 }/ s; G) k3 b2 w: D0 C8 m" y; }4 b6 M/ n$ b5 Y
    QuadraticClassGroupTwoPart(Q5);
    " E# F/ ?: Y$ K" S1 [0 p4 O4 a# V: @QuadraticClassGroupTwoPart(M);; u0 ]( b; Z* L4 {
    NormEquation(Q5, 50) ;
    $ {' v4 q' q$ e' _8 O$ o9 eNormEquation(M, 50) ;# E' Q# v' d) Z) t
    ; ]' ^, A/ K% ~% I+ f+ Z
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    / r+ F# `9 {" H6 e0 R  PUnivariate Polynomial Ring in w over Q5% ~( l$ l" U  q3 v& W" f
    Equation Order of conductor 1 in Q5" o$ ~5 E9 I  {
    Maximal Equation Order of Q5; l, p2 [5 V$ ~6 q% V( s" K
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    0 b. U# {7 ?1 C# n9 ?Order of conductor 625888888 in Q5, _, L4 \, `" |  V& S" Y. L  k' i/ @
    true Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    9 s" T- y: s4 _+ O; ~3 ]3 ]true Maximal Equation Order of Q5
    # ~6 z% n9 R/ N6 n' n. Ftrue Order of conductor 1 in Q5" M- M' }, v& l! M1 w) x
    true Order of conductor 1 in Q5# G- p3 {! T6 R  q5 G, S6 B
    true Order of conductor 1 in Q5
    1 P4 L3 Y+ |1 v  U4 ^[8 y: S9 w$ j& F: h
        <w - 5*Q5.1, 1>,  T$ e9 d- u) i# Q
        <w + 5*Q5.1, 1>1 J9 W5 \5 B& j$ S
    ]
    5 V3 k8 n. _6 \5 U- {* [8
    8 p! |, v5 p* E* WQ5.1 + 1
    & F$ y7 x5 P1 e  Y4 B# H$.2 + 1
    . B5 @; Z5 V' A  q8
    4 ~7 t$ H# }' u) Z4 z; y' J. B  l' \1 `5 A0 i9 m
    >> Name(M, 50);
    5 _! ~/ v3 i' l1 j5 C1 U$ ]6 v       ^
    ( h. v# g3 Y  I0 @; g/ J7 ~Runtime error in 'Name': Argument 2 (50) should be in the range [1 .. 1]7 w2 D' x6 A0 Z8 L4 V

    % X- q; t  q  \; W8 B; G9 K! T3 }1# W# l& n8 S/ U
    Abelian Group of order 1
    - e, \4 s' c/ i5 O6 W# w9 NMapping from: Abelian Group of order 1 to Set of ideals of M
    ) X: j- M/ \9 ~- mAbelian Group of order 1
    + z. U! S% k, i! }" g* \Mapping from: Abelian Group of order 1 to Set of ideals of M
    0 r5 M# c+ Z, S' x6 M2 }1
    ! i- a6 {3 X6 Y% c9 K7 y5 O9 i12 a5 b, p9 f) b- z8 L+ x7 f' t# e
    Abelian Group of order 1! }2 d" a0 H2 J
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    2 O2 x1 K. e1 o' [! Cinverse]* d# j' {' O. a" `/ W1 v8 o
    1
    $ D8 ]( ^7 \9 k1 @/ rAbelian Group of order 1
    2 q1 z) L+ l" @6 L! [& m* D" sMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant  v" ?4 ~2 k6 [8 \6 j
    8 given by a rule [no inverse]
    2 Z6 V) f) _9 ?. Q' D( ?& X% }Abelian Group of order 1
    ( m1 |, z: \9 D( `3 V$ ZMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    # c& n: w$ B/ Q8 given by a rule [no inverse]( M4 _3 ?, d4 V+ F
    true [ 5*Q5.1 + 10 ]
    0 _9 |1 I* T* x: X! X, F/ H5 mtrue [ -5*$.2 ]
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    二次域上的分歧理论

    1.JPG (177.16 KB, 下载次数: 286)

    1.JPG

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 12:42 编辑 + e( n5 Y9 O7 [' f9 H7 y& A. t
    ' S: _4 t! z, s4 g& k- F# g
    基本单位计算fundamentalunit :
    4 b1 C! ^1 c0 n  ^5 mod4 =1                                              50 mod 4=2" Q0 g5 T; }2 W& ~

    + B' N  n& B# v, m x^2 - 5y^2 = -1.                                 x^2 - 50y^2 = 1.
    & ]  R5 c& z: x5 k0 ^3 B( o x^2 - 5y^2 = 1.                                  x^2 - 50y^2 = -1.  `  a) k! G/ D2 G9 ~! ^9 e6 c
    4 d( k4 N) w$ Z+ c3 L

    8 b0 i, p  X' ~% U# u最小整解(±2,±1)                              最小整解(±7,±1)
    * ~; i7 `2 B. A" ]* |) b7 ?3 {+ \% q                                                             ±7 MOD2=1
    % p( P4 `! _; S" g4 P9 E. y, ^4 b5 _9 Q4 [& ?( \
    两个基本单位:

    11.JPG (3.19 KB, 下载次数: 272)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    lilianjie 发表于 2012-1-4 18:31
    3 }! v' d' Q; a! U基本单位fundamentalunit :
    0 j, H" O3 c% K' L& S5 mod4 =1                              50 mod 4=2
    , [, v9 ^( N; R. _( j7 Q) }8 h) r7 \
    基本单位fundamentalunit

    3.JPG (105.07 KB, 下载次数: 265)

    3.JPG

    2.JPG (140.29 KB, 下载次数: 271)

    2.JPG

    1.JPG (193.2 KB, 下载次数: 269)

    1.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    本帖最后由 lilianjie1 于 2012-1-4 19:16 编辑 1 F% p7 V) ^( {' a- D7 V, |5 y

    5 F3 G1 [& D0 D2 \' E: i判别式计算Discriminant
    $ [! @2 ?  g# a  a7 O: }0 W8 |8 {4 @7 z; z1 _) @8 D- E1 y
    5MOD 4=1 % T' E) V5 U+ X1 ]# ~  I6 E

      t  k! v; k' U* l# e(1+1)/2=1          (1-1)/2=05 z, n0 P$ C" @7 g# G2 l
    % P; G% n$ c/ ~3 [+ @! {- W5 ?2 K
    D=5
    # h& i) k  K/ a2 g0 l% x
    6 G6 q  J& @' P0 i( }( m( c$ U7 J. J( F" d7 V& r: Q
    50MOD 4=2
    8 e$ l! S& ]& F$ v: X. A( ?0 a" oD=2*4=8

    33.JPG (165.31 KB, 下载次数: 263)

    33.JPG

    22.JPG (137.12 KB, 下载次数: 254)

    22.JPG

    11.JPG (163.36 KB, 下载次数: 292)

    11.JPG

    回复

    使用道具 举报

    74

    主题

    6

    听众

    3292

    积分

    升级  43.07%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    lilianjie 发表于 2012-1-9 20:44 5 K0 ?# T% y+ c0 h, B  O. ^5 q2 A9 c

    ' [0 q+ [* D0 i7 w分圆多项式总是原多项式因子:8 M- E1 a- g, Y4 w! q' L7 E
    C:=CyclotomicField(5);C;
    : {0 t+ X* k* z- B1 \CyclotomicPolynomial(5);
    ( f% _4 i0 c& i2 G. ?' a1 J* p& G
    2 e! W9 Y& W# W5 m
    分圆域:* k: ]+ f* _) g/ D$ H' g
    分圆域:123
    : d* E, N- ]4 A  |) S
    & r$ c8 P# Y* ?3 i7 c( V: q2 [R.<x> = Q[]9 B& K  G% V  a% H/ O
    F8 = factor(x^8 - 1)
    ' ]* l0 E* L3 ]2 {- ?F8
    6 _( [7 o2 K) k: T& |. V6 z1 E- a2 D$ W2 h
    (x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)
    9 ^* _' E- G  l+ S9 I$ l' e- @8 m# S2 e# e6 H" H) R* f2 Z5 P
    Q<x> := QuadraticField(8);Q;5 z+ r. _: ~# d3 v. L" i' Z
    C:=CyclotomicField(8);C;! g: N# r  ^: i8 {+ W" i
    FF:=CyclotomicPolynomial(8);FF;' y% {7 h% U  j* `) N

    3 A& N- ~9 [1 g) @1 A6 H3 XF := QuadraticField(8);$ O5 s5 Q/ x1 M8 @  S- V& G/ L
    F;- f% ~3 N$ h; N2 D7 K. U2 J
    D:=Factorization(FF) ;D;
    9 B1 D& H3 ~" S/ Q: |Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field+ D. N( T# `7 n2 c% J9 M
    Cyclotomic Field of order 8 and degree 4
    # i, J; C6 ~: Y. q$.1^4 + 1
    9 s" R. D1 I+ U- x$ KQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    8 Y8 o2 X, _" T7 w) j* K[
    6 G( ~: l: j7 S; G    <$.1^4 + 1, 1>
    & W" G9 D" n' m  t]
    1 W% \! X9 B" N+ M& e3 d- P' y, R! ^9 _) H  p
    R.<x> = QQ[]5 J' h/ `, E# E: ]( V, M
    F6 = factor(x^6 - 1)
    + [8 J0 }) r4 \% PF6
    6 P3 t' {$ _3 z) ?5 e
    ! M, ]% l: t3 w  [3 ]; j(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1) 6 L) P3 y6 j# L# W6 ~
    # X% ?# E) h! I) @+ z, V' @# y
    Q<x> := QuadraticField(6);Q;
    " \, `5 f- K1 w; R( j; VC:=CyclotomicField(6);C;
    : p3 O3 I- v2 c. ?* x( b9 C/ RFF:=CyclotomicPolynomial(6);FF;: ~) ~) s/ M0 h8 `
    # L2 Y( y, z* R1 u" y, m' o
    F := QuadraticField(6);2 G, Q: {  Q5 K$ j% I
    F;
    7 G" P8 }6 V8 w. d9 z; eD:=Factorization(FF) ;D;
    1 C, e: @( X& a/ g$ ]( `( O2 ^' Z4 B6 kQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
      \" F* x9 ^8 \( w# q) }Cyclotomic Field of order 6 and degree 2
    + p. S7 o, I( @3 R! ]$.1^2 - $.1 + 1
    * g' R: z* d0 n3 q  ~6 _6 MQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field' B0 G: d' F! A& V/ S
    [3 Z& p+ r  s2 u0 D( _, {
        <$.1^2 - $.1 + 1, 1>' |' \' Z6 u! @. z% ~% A3 A! p
    ]
    . k8 X% t0 ?5 v8 o# {& G. m( A& v: j7 p) N5 d) d9 b) z" i$ }
    R.<x> = QQ[]4 z! S( o$ W% s% L" R
    F5 = factor(x^10 - 1)
    ' R- D2 k+ u* D/ CF5
    * g# I& z1 v$ t: N, C(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
    1 {, d! a2 \- h7 _" L1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)
    5 m: c5 C7 E; ~9 F) e3 [8 y- h: G0 I& U- H8 A, W# X
    Q<x> := QuadraticField(10);Q;
    * I0 f1 s; l! @$ WC:=CyclotomicField(10);C;
    7 D' Q$ u: ~# i) K% z4 s! EFF:=CyclotomicPolynomial(10);FF;2 V8 a: ]; J* H" l$ f9 s
    . k; W. l+ j: O6 D9 o' n9 J
    F := QuadraticField(10);4 O) ~( `0 J& a1 [- a* F, C
    F;
    + I; b; ^9 Q+ U+ C6 v0 _D:=Factorization(FF) ;D;
    ) M) h2 ~5 ^2 O4 a1 }8 qQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field5 m7 ], A3 ?, w! z1 z; a
    Cyclotomic Field of order 10 and degree 4
    . G# t1 j8 F! Y" z" J& T4 M  R: n* D$.1^4 - $.1^3 + $.1^2 - $.1 + 1
    $ d5 l& n+ a7 K1 O8 kQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field) m" D" P. E% Q6 E9 T, m" j
    [
    # z( b+ C1 g" K* I% P# x) s    <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>
      ^( M& f& U; w' y8 O+ |$ R1 a4 G]
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-9-23 05:54 , Processed in 0.655525 second(s), 86 queries .

    回顶部