2 L# `. ]' U1 f" c/ sNormEquation(Q5, 5) ;( L2 G r% t5 H- P
NormEquation(M, 5) ;) C9 r* I; j ^6 h0 c
) y1 E, e' u- b' s; U# b& Q
5 G. ?# n/ F. Y, d7 Y- B- GQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field ! d& W$ r/ x I4 U% q3 J% nUnivariate Polynomial Ring in w over Q5 $ R3 S$ w" @* C* eEquation Order of conductor 2 in Q5# e# `3 w' q* r6 t
Maximal Order of Q5 # ^( r$ l% ?# N7 x% tQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field : q/ ~7 e$ J# Q! f0 n+ mOrder of conductor 625888888 in Q5& Y2 e1 j8 c+ R( T; K0 N
true Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field 9 E( K0 e: N' f7 }( gtrue Maximal Order of Q5- s' w3 ~# U' L, ^& q& a7 O; G! [: ]
true Order of conductor 16 in Q5 ' ~8 A' [) h9 |" [8 Strue Order of conductor 625 in Q5- Y0 ~* T R) c- W' A
true Order of conductor 391736900121876544 in Q5 " v2 M" Z) F( B2 t, h[ $ r0 b/ n' v" N* \' S$ h2 C7 z <w^2 - 3, 1> + [" L2 S: r7 y] / z' P5 o% N. Z9 i# N- }5 ; r! J, I0 Q6 e+ Z3 P1/2*(-Q5.1 + 1) : S# i0 ?' y. {& |# \: S3 c# L-$.2 + 1 7 I( C1 G" `" w% f5 y56 _& a, C: z6 F3 A
Q5.1 k% y' o/ y+ N! n7 \2 h4 P
$.2 " g R! i7 z# t. r1 b2 x& V0 u4 `1) y2 b! e5 }/ i. l6 f& T; F
Abelian Group of order 1 " W/ g! G( T6 o* gMapping from: Abelian Group of order 1 to Set of ideals of M) g; L* Y5 w3 `& C
Abelian Group of order 13 p' E( _3 Z4 P! T
Mapping from: Abelian Group of order 1 to Set of ideals of M% X p) o8 c- u5 K- d
1 n) U% f l o- i- b( V9 b' G0 [1 $ k/ a7 t- F- T% Y$ cAbelian Group of order 1 + s0 h& t9 X6 n {0 [* bMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no& t6 G5 I Y/ d
inverse]9 S* u# ]% a# [# _5 r. r
1; T; w0 k9 M K5 }
Abelian Group of order 1 7 Q/ a: Q* G q$ b) @4 e6 nMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant ' |- F. ~5 s& f/ G5 given by a rule [no inverse]$ `+ L+ q) k- T: p( t( |9 P& S
Abelian Group of order 1 3 V! X4 Y. i( w( I) B6 y& t' dMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant ! ?, D7 J! X7 p3 e& s5 given by a rule [no inverse]0 g8 _. d: M' \1 c
true [ 1/2*(Q5.1 + 5) ] 1 W. u' f5 f! j# ntrue [ -2*$.2 + 1 ]1 q' |4 ^0 t; \
4 R! w l! M- i! g- S
$ C9 L" x1 W/ g$ T+ F
$ S5 K) J$ ]- v6 U! y# m & W3 B& B# x2 E( F7 x1 n' O* e: q5 t4 r6 U+ G- }' G
==============0 I) b- D: x p V' W! v- j- @
6 i" I6 ^9 e) X% C7 p
Q5:=QuadraticField(50) ;% `6 Z8 ~! f8 H: b: n0 y
Q5;2 M5 C! B, o$ f+ E# ^( E+ R
1 l o! p4 b1 ]( ?3 X' h1 |
Q<w> :=PolynomialRing(Q5);Q; . _/ z, B% T0 c7 `- t8 m, _# ^EquationOrder(Q5);2 J# B7 g0 [7 |. l6 l6 V9 F
M:=MaximalOrder(Q5) ; . _. p! N$ {( Z: n* ]M; 1 ~2 N% l- d- P' MNumberField(M); j7 E2 b- i% n+ q
S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888; , E0 `. g) {% K. _IsQuadratic(Q5); 3 j" Y( z- @. ]; p% SIsQuadratic(S1); ( @9 ~" s/ B7 J' u4 K8 [8 AIsQuadratic(S4);* D0 R& y4 J( k8 U) y1 e
IsQuadratic(S25); ) c& J+ N0 |' I7 m4 n; u( |IsQuadratic(S625888888);0 F6 y7 n' M+ c H! v3 j! ^: m
Factorization(w^2-50); % } G3 u% Q9 rDiscriminant(Q5) ; 3 A# t, e0 L- }* p& RFundamentalUnit(Q5) ;& e. h' N3 w5 J& U2 l
FundamentalUnit(M); ' s" v* F$ N$ M' U5 f) @* dConductor(Q5) ;$ E+ {0 Q5 k* ? Z V2 T( p9 S
6 {! B8 S4 ~) t2 u8 i/ l4 B
Name(M, 50);. @ S5 S! p) w2 c" R4 K. i; m4 M3 h
Conductor(M); ' T, [/ A9 [+ U6 fClassGroup(Q5) ; ! |5 N) ~6 H& S% w+ @+ l1 Y6 ?7 QClassGroup(M); % }* }* o+ `; U4 [' n2 {# bClassNumber(Q5) ; ( H3 J. \- z* M3 J' m, KClassNumber(M) ; 4 k% e7 }$ x# }. F' _PicardGroup(M) ;9 e. E+ r% Z# Y9 E8 O. k
PicardNumber(M) ; 7 g9 n1 }, d) G2 Q: F7 I, H7 W9 Y# g
QuadraticClassGroupTwoPart(Q5); ; R4 ?3 Y |6 l }3 }' kQuadraticClassGroupTwoPart(M);! N3 s; N& ~. h& f3 y
NormEquation(Q5, 50) ; - M ~* p, W0 X' c! l9 T% X% iNormEquation(M, 50) ;- v( j- V: z$ q" A! I
; G' i# o2 X g! I4 M. l
Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field9 o. V w0 }" @
Univariate Polynomial Ring in w over Q5 * P! i& i6 \) g- d# ^3 [8 y |Equation Order of conductor 1 in Q5 2 ~9 u+ W& n' }# r8 u" o) e' ^Maximal Equation Order of Q5 5 C+ p( ]: L' t( @3 z7 aQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field " u$ _. P7 L! v) rOrder of conductor 625888888 in Q5; j3 l; v3 t. G5 E" Q$ V
true Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field , ]0 R; l; O4 o. Y4 `! m% vtrue Maximal Equation Order of Q5 ! p9 S3 K( d( v/ U. u+ rtrue Order of conductor 1 in Q5' ?7 z+ H2 h" Y. i4 t4 `
true Order of conductor 1 in Q5 * L( {1 o) }! F$ ~# D* Ktrue Order of conductor 1 in Q50 k. ?8 H, n- n4 U- S, v# _
[& F: ]' t7 ], m. @! h" L
<w - 5*Q5.1, 1>, % A* f2 m2 C' n- n. \5 s( I <w + 5*Q5.1, 1> 6 p, q% F2 @; O+ J" q( V] # d+ b |! [( c1 P" e' {1 @8# B6 _ W5 x% V, @& N* X1 I
Q5.1 + 1( s7 \3 |4 _5 Q& z4 n; D$ d# k2 K. c0 M
$.2 + 1 - v# s3 l. @: B4 j( ]: I T8& o4 F) U8 g5 `
- ]. A! }( a, j+ C3 W>> Name(M, 50);0 T. k5 b. I! d z/ x# B7 [1 W6 y
^( | F9 Z( B$ U; [; g0 \, M# W% P0 i
Runtime error in 'Name': Argument 2 (50) should be in the range [1 .. 1] 3 i; j8 ^- I2 h" n+ n- i& r 0 A' y1 f! ] s7 f H# |1 : w; ~6 m, a- `" f9 C- e9 S$ nAbelian Group of order 1 ( E* K+ q" |& x ZMapping from: Abelian Group of order 1 to Set of ideals of M $ o8 b" b4 Q6 u( yAbelian Group of order 1 2 n6 V) b! C2 [0 D0 e& [Mapping from: Abelian Group of order 1 to Set of ideals of M ; j. }7 K2 a) u' H. Z+ |5 L" E+ m1; \. y% z% ^/ i; L
16 S7 N$ s Y. F7 g# O, @, _
Abelian Group of order 1$ }# \4 ^# q8 g: G |% Z- @* Y
Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no0 ]5 x2 S! Q3 a0 a b3 ]% I1 P
inverse], U3 c8 y B1 K D
1& H7 ^# V) S F" B4 N
Abelian Group of order 1 . j" q+ [$ g* C, Z/ N0 UMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant 6 f' p" W; E, ?6 F5 n6 C& y8 given by a rule [no inverse] 6 `; J, W" R( G) e6 l2 ZAbelian Group of order 1/ X+ U" |2 s4 G0 v$ o
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant2 m% Z. j$ V; p" ^
8 given by a rule [no inverse] % }( `! f9 r% Q2 T) rtrue [ 5*Q5.1 + 10 ] 7 E. v& A+ }+ g) Utrue [ -5*$.2 ]