QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 76818|回复: 0
打印 上一主题 下一主题

Songbirds' Learning Hub in Brain Offers Insight Into Motor Control

[复制链接]
字体大小: 正常 放大
张立涛 实名认证       

280

主题

5

听众

2452

积分

  • TA的每日心情
    奋斗
    2015-10-7 09:09
  • 签到天数: 75 天

    [LV.6]常住居民II

    优秀斑竹奖

    群组西北工业大学

    群组Matlab讨论组

    群组狂热数模爱好者

    群组岩土力学与地下工程

    跳转到指定楼层
    1#
    发表于 2012-5-21 13:35 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Songbirds' Learning Hub in Brain Offers Insight Into Motor Control


    To learn its signature melody, the male songbird uses a trial-and-error process to mimic the song of its father, singing the tune over and over again, hundreds of times a day, making subtle changes in the pitch of the notes. For the male Bengalese finch, this rigorous training process begins around the age of 40 days and is completed about day 90, just as he becomes sexually mature and ready to use his song to woo females.

    120520133510-large.jpg
    To learn its signature melody, the male songbird uses a trial-and-error process to mimic the song of its father, singing the tune over and over again, hundreds of times a day, making subtle changes in the pitch of the notes.


    To accomplish this feat, the finch's brain must receive and process large quantities of information about its performance and use that data to precisely control the complex vocal actions that allow it to modify the pitch and pattern of its song.
    Now, scientists at UCSF have shown that a key brain structure acts as a learning hub, receiving information from other regions of the brain and figuring out how to use that information to improve its song, even when it's not directly controlling the action. These insights may help scientists figure out new ways to treat neurological disorders that impair movement such as Huntington's disease and Parkinson's disease.
    The research is reported as an advanced online publication on May 20, 2012 by the journal Nature, and will appear at a later date in the journal's print edition.
    Years of research conducted in the lab of Michael Brainard, PhD, an associate professor of physiology at UCSF, has shown that adult finches can keep track of slight differences in the individual "syllables," or notes, they play and hear, and make mental computations that allow them to alter the pitch.
    For previous experiments, Brainard and his colleagues developed a training process that induced adult finches to calibrate their song. They created a computer program that could recognize the pitch of every syllable the bird sang. The computer also delivered a sound the birds didn't like -- a kind of white noise -- at the very moment they uttered a specific note. Within a few hours, the finches learned to alter the pitch of that syllable to avoid hearing the unpleasant sound.
    In the new research, the UCSF neuroscientists used their technology to investigate how the learning process is controlled by the brain. A prevailing theory suggests that new learning is controlled by a "smart" brain structure called the basal ganglia, a cluster of interconnected brain regions involved in motor control and learning.
    "It's the first place where the brain is putting two and two together," said Jonathan Charlesworth, a recent graduate of UCSF's neuroscience PhD program and the first author of the new paper. "If you remove the basal ganglia in a bird that hasn't yet learned to sing, it will never learn to do so."
    Once a basic, frequently repeated skill such as typing, singing the same song or shooting a basketball from the free-throw line is learned, the theory suggests, control of that activity is carried out by the motor pathway, the part of the nervous system that transmits signals from the brain to muscles. But for the basic routine to change -- for a player to shoot from another spot on the basketball court or a bird to sing at a different pitch -- the basal ganglia must again get involved, providing feedback that allows learning based on trial and error, the theory suggests.
    What remained unclear is what makes the basal ganglia so "smart" and enables them to support such detailed trial-and-error learning. Was it something to do with their structure? Or were they getting information from elsewhere?
    The scientists sought to answer this question by blocking the output of a key basal ganglia circuit while training male finches to alter their song using the white-noise blasts. As long as the basal ganglia were kept from sending signals to the motor pathway, the finches didn't change their tune or show signs of learning. But when Brainard's team stopped blocking the basal ganglia, something surprising happened: the finches immediately changed the pitch of their song, with no additional practice.
    "It's as if a golfer went to the driving range and was terrible, hitting the ball into the trees all day and not getting any better," said Charlesworth. "Then, at the end of the day, you throw a switch and all of a sudden you're hitting the fairway like you're Tiger Woods."
    Normally, you'd expect improvement in skill performance like this to take time as the basal ganglia evaluates information, makes changes and gets new feedback, Brainard said.
    "The surprise here is that the basal ganglia can pay attention, observe what other motor structures are doing and get information even when they aren't involved in motor control," Brainard said. "They covertly learned how to improve skill performance and this explains how they did it."
    These findings suggest that the basal ganglia's "smartness" is due in large part to the steady flow of information they receive about the commands of other motor structures. It also portrays the basal ganglia as far more versatile than previously understood, able to learn how to calibrate fine-motor skills by acting as a specialized hub that receives information from various parts of the brain and responds to that information with new directives.
    The findings also support the notion that problems in the basal ganglia circuit's ability to receive information and learn from it may help trigger the movement disorders that are symptoms of Huntington's and Parkinson's, Brainard said.
    Timothy Warren, another PhD graduate working in Brainard's lab, was the paper's third author.
    Funding support for the research came from the National Institutes of Health and the National Science Foundation.
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    优秀的男人最有魅力!
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-4-27 23:40 , Processed in 0.375179 second(s), 54 queries .

    回顶部