- 在线时间
- 65 小时
- 最后登录
- 2014-6-20
- 注册时间
- 2011-5-8
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 324 点
- 威望
- 0 点
- 阅读权限
- 30
- 积分
- 114
- 相册
- 0
- 日志
- 4
- 记录
- 3
- 帖子
- 33
- 主题
- 26
- 精华
- 0
- 分享
- 0
- 好友
- 3
升级   7% TA的每日心情 | 开心 2013-5-30 09:18 |
---|
签到天数: 4 天 [LV.2]偶尔看看I
- 自我介绍
- 从1979年开始,潜心研究世界数学名题四色问题的人工证明,去年由科学出版社出版了《四色问题探秘》小册子。
 群组: 学术交流A |
本帖最后由 张彧典 于 2014-4-15 10:05 编辑 7 r& A& T% z. h
" c0 a3 `8 u+ {; j 20万元征集反例 编辑
# l) O# n4 i# x' `6 s6 Q. I5 F 2012-6-15 9:10:10 | 转载 | 固定链接 | 评论(0) | 浏览(1) ) {. q/ Z9 Z2 i4 }
尊敬的四色问题专家:您好!
8 i( m0 e" J; d7 v) l: t" H8 h5 j9 ~
1890年,赫伍德构造了一个五轮构形(人们称赫伍德反例构形),指出肯普证明五轮构形的换色程序是不够完备的。但是他并没有深入研究这样的最简反例构形究竟有多少。我在论文《四色猜想的数学 归纳法证明》中确立了这样的最简反例构形一共有9个,并且给出两种四染色程序:前8个构形用赫伍德换色程序,第9个用张彧典换色程序。' g* [4 h: q/ e' g2 D$ O1 j
; x- o# X/ x6 \& Z3 |& t* A C I 为了验证这个不可避免构形集的完备性,我特设重奖征集反例擂台,凡构造出别于9个构形及解法的最简构形者,经双方认可,可得到20万元人民币的奖金。联系电话0353--8082346. 18335385319.
- r9 h$ h8 ]5 P, N8 X1 y1 P2 L. g+ B6 J U
# q& U( I/ ?6 ~1 R7 a4 h
" {; ~: d- X) `$ x" l
) `4 [( u* K4 T5 h" U
* c( u A1 f# e+ `6 E, l+ V |
zan
|