QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3924|回复: 12
打印 上一主题 下一主题

[课件资源] matlab矩阵详解

[复制链接]
字体大小: 正常 放大
firezzt 实名认证       

2

主题

8

听众

71

积分

升级  69.47%

  • TA的每日心情

    2015-11-21 17:18
  • 签到天数: 10 天

    [LV.3]偶尔看看II

    群组学术交流A

    跳转到指定楼层
    1#
    发表于 2013-1-22 16:10 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    第1章  矩阵及其基本运算
    1 w% \) _' y: l- z) K- _1 \6 ]2 ~7 k0 PMATLAB,即“矩阵实验室”,它是以矩阵为基本运算单元。因此,本书从最基本的运算单元出发,介绍MATLAB的命令及其用法。; f* U4 i7 ~- z) r4 P# G- o' {
    1.1  矩阵的表示" H6 m) D; l9 Q& O) T/ Z
    1.1.1  数值矩阵的生成, S. n7 O+ X9 h& \
    1.实数值矩阵输入( Y2 t+ k& b1 I3 Z' {5 o2 m. v: @
    MATLAB的强大功能之一体现在能直接处理向量或矩阵。当然首要任务是输入待处理的向量或矩阵。
    % ?5 g; t% m; |; K1 M. P; `) |% U6 D不管是任何矩阵(向量),我们可以直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。所有元素处于一方括号([ ])内;当矩阵是多维(三维以上),且方括号内的元素是维数较低的矩阵时,会有多重的方括号。如:
    ! _, o& v* K) ~! s+ m% n; T" S4 L>> Time = [11  12  1  2  3  4  5  6  7  8  9  10]2 J5 E6 `5 u# `
    Time =
    7 I: o( ]5 k1 y" k11  12  1  2  3  4  5  6  7  8  9  103 L3 H' N0 M& K! N3 X
    >> X_Data = [2.32  3.43;4.37  5.98]
    * J) d! b7 P6 U9 MX_Data =' i& i$ K; v" j& h. I6 Y
    2.43  3.43
    * ]9 a5 `1 D0 Y- I9 o0 i, l4 H4.37  5.98
    " n+ Y; H: ], d6 G# L>> vect_a = [1  2  3  4  5]: u3 x) u6 J9 r2 H6 F& i1 X, a) h
    vect_a =/ \, y" z9 p. T+ g% O$ Z
    1  2  3  4  5
    # g4 \) F- |$ A- f: \>> Matrix_B = [1  2  3;
    # W9 Q* f. q7 d2 Y* X. o>>          2  3  4;3  4  5]
    ) H% ]6 _& b. ZMatrix_B = 1  2  3" N0 ?6 ?% p* c4 i2 y- o
    2  3  4, I, z% x4 _- F7 @5 u- i7 V* v! Q# C
    3  4  5
    " @1 Z' x' O, y) Y# E  r>> Null_M = [ ]           %生成一个空矩阵5 p" E& b, J" _# E
    2.复数矩阵输入5 r- _& f; y2 \) T. n5 ^) W& y' O& T
    复数矩阵有两种生成方式:
    * M6 |+ S7 y6 c& ^7 I: d. W第一种方式: I4 u5 P. d; I& r, t; m; i5 J
    例1-1
    6 D) \( I; p" ]  W1 ~>> a=2.7;b=13/25;
      a. x7 Q# Z* J: {& ?( ~3 e>> C=[1,2*a+i*b,b*sqrt(a); sin(pi/4),a+5*b,3.5+1]
    0 p7 P/ ]4 P9 y5 KC=/ P( e& e( c, J% F: X
       1.0000             5.4000 + 0.5200i   0.8544         
    * T6 c3 }& T- a1 N   0.7071             5.3000             4.5000          - h) o" M: Q8 S2 [' R
    第2种方式
    . ~! L, ~) V+ S% W' n3 Z1 q( p2 l  W例1-2
    ; H! N! {* w; Q>> R=[1 2 3;4 5 6], M=[11 12 13;14 15 16]: O2 S7 B: o* H' [4 C0 r
    R =
    8 }0 b' _7 D' u- D7 X  1     2     3
    0 K& ?& V4 ^2 }  4     5     67 n. }& ]! I$ Y& G- z  x9 v
    M =* r4 C5 [; Z1 _. |
      11    12    13- U3 S# G8 Y$ \7 M+ ?) u
      14    15    163 h0 Z" u3 @5 n* Z
    >> CN=R+i*M
    ; s3 e* T6 B. j( L8 ~( L0 \  kCN =
    7 m' v: ]6 l( b8 p   1.0000 +11.0000i   2.0000 +12.0000i   3.0000 +13.0000i
    ) s, o4 |  {, T+ \1 d7 \   4.0000 +14.0000i   5.0000 +15.0000i   6.0000 +16.0000i
    - M. i& P) I: w8 }4 b* K# _1.1.2  符号矩阵的生成. h9 y. n8 E, @5 }' y
    在MATLAB中输入符号向量或者矩阵的方法和输入数值类型的向量或者矩阵在形式上很相像,只不过要用到符号(symbol)矩阵定义函数sym,或者是用到符号定义函数syms,先定义一些必要的符号变量,再像定义普通矩阵一样输入符号矩阵。8 {) S* h6 j5 S' t# U0 E( V' |
    1.用命令sym定义矩阵:+ v5 h! m- Z3 ?  n- h3 Z' q
    这时的函数sym实际是在定义一个符号表达式,这时的符号矩阵中的元素可以是任何的符号或者是表达式,而且长度没有限制,只是将方括号置于用于创建符号表达式的单引号中。如下例:
    . q  ?( d& i5 u( |$ z例1-3, u9 \9 u* h3 s9 m1 \0 U
    >> sym_matrix = sym('[a b c;Jack,Help Me!,NO WAY!],')/ }1 l1 ?% _- b. R
    sym_matrix =6 U. h+ g# h! z1 O
    [a         b          c]
    6 D% G8 F! l9 r# ?; Y[Jack   Help Me!   NO WAY!]
    - G1 K  ?# ?" h8 y$ l>> sym_digits = sym('[1 2 3;a b c;sin(x)cos(y)tan(z)]')
    * Y& a: \5 \, V8 T: jsym_digits =6 B) ?  d2 U. A% C4 d; k$ V; R' i1 D
    [1        2        3]
    & |3 m. k7 s8 o& E[a        b        c], p/ A  F3 h: t9 ^
    [sin(x)cos(y)tan(z)]
    3 }1 g- y6 l! c  c- s2.用命令syms定义矩阵" F; v# n- E3 ~! H7 X
    先定义矩阵中的每一个元素为一个符号变量,而后像普通矩阵一样输入符号矩阵。+ L5 o8 z. R2 ~/ a6 Z9 S
    例1-4: w. l& J8 \# l/ @
    >> syms  a  b  c ;' @2 k# ?, D4 f/ G
    >> M1 = sym('Classical');5 \  X$ [( r7 c) v4 e
    >> M2 = sym(' Jazz');; X" N4 K% B0 o9 i
    >> M3 = sym('Blues')
    " P" ]* [7 p/ v$ ~, a>> syms_matrix = [a  b  c; M1, M2, M3;int2str([2  3  5])]
    % D' {, E8 E4 B  l& w$ |syms_matrix =  K: P6 _- ?2 H# Z, h
    [   a      b     c]# h8 I. V6 R9 G" q
    [Classical  Jazz  Blues]. Y3 w, P/ z9 w2 g" e
    [   2      3     5]+ D  c4 L. ^* z: F2 n" W3 ]2 Y
    把数值矩阵转化成相应的符号矩阵。6 ^' Y/ k- K8 `" Y
    数值型和符号型在MATLAB中是不相同的,它们之间不能直接进行转化。MATLAB提供了一个将数值型转化成符号型的命令,即sym。' m7 U: h8 J. T- T7 C2 {) U7 U
    例1-57 M2 @( r( \- P+ y7 U7 M1 c+ R2 F
    >> Digit_Matrix = [1/3  sqrt(2) 3.4234;exp(0.23) log(29) 23^(-11.23)]
    ! w+ _" h  B& Y/ L; I7 U>> Syms_Matrix = sym(Digit_Matrix)* T# }0 ]3 D6 t( M8 N) p
    结果是:
    1 x0 a$ Q- h* d2 Z4 ?9 MDigit_Matrix =7 B( t* S- @7 L, S/ e
    0.3333    1.4142    3.4234# t7 R2 f" G+ L3 z6 F# L+ n& K% r
    1.2586    3.3673    0.0000
      {9 h8 n& ^  g1 T) A) |: ASyms_Matrix =
    : D* z5 M) A4 a' u$ r& f) a8 Y$ ^[            1/3,                   sqrt(2),                17117/5000]
    , R& U0 d' E2 M" V4 y' J[5668230535726899*2^(-52),7582476122586655*2^(-51),5174709270083729*2^(-103)]
    2 s! I" [9 Q- {+ A9 ?注意:矩阵是用分数形式还是浮点形式表示的,将矩阵转化成符号矩阵后,都将以最接近原值的有理数形式表示或者是函数形式表示。
    % T2 |+ p9 w8 Q& B8 x  |1.1.3  大矩阵的生成5 |) E( c/ a- W5 J$ b. x" ^# E7 l# G- g
    对于大型矩阵,一般创建M文件,以便于修改:
    & i# O# U2 q4 k) r) P例1-6  用M文件创建大矩阵,文件名为example.m7 Z. v$ v. x; U
    exm=[ 456    468   873    2  579   552 R" I! N1 \% E( d3 @2 j3 j7 F6 n$ B
    21    687   54   488    8   13
    5 `- T; U& t% W% k/ U5 u65   4567   88    98   21    5
    , I. c8 A) Y, e% x456    68  4589  654    5  987
    7 _3 J# O4 i! }% I5 w! O5488   10     9    6    33  77]$ D* a2 {% s1 }; t) i1 x) l
    在MATLAB窗口输入:  J0 Q0 r( l7 F+ F' \6 u
    >>example;- P5 t, @6 x. d# q9 I
    >>size(exm)   %显示exm的大小& |4 v2 c3 |8 |6 g2 @( v+ a* X
    ans=
    / k- i* M! \. x0 F    5  6      %表示exm有5行6列。
    0 y8 H) U& ]3 k. [* }8 A1.1.4  多维数组的创建
      H. [% j7 {+ K函数  cat
    1 I1 ^: s- `  q. k# i  X格式  A=cat(n,A1,A2,…,Am)2 w; `( `1 m, Q, A
    说明  n=1和n=2时分别构造[A1;A2]和[A1,A2],都是二维数组,而n=3时可以构造出三维数组。0 u9 Y" P, T: W0 P
    例1-7
    % P  ^* U# g3 t- n; Z$ n" |>> A1=[1,2,3;4,5,6;7,8,9];A2=A1';A3=A1-A2;* {, e" D- [+ g- {5 z# H
    >> A4=cat(3,A1,A2,A3)
    0 v  J3 w& M, _: P' ^A4(:,:,1) =
    3 ~. k2 a( D9 t+ f8 {     1     2     3( x0 b: H$ h: M4 X
         4     5     6$ U! X& u; ^9 M) f) A' E
         7     8     9
    - d& [) j2 d  g; x1 u  xA4(:,:,2) =) o3 z  V2 X* |; h
         1     4     7; o, [! `$ }4 B) S  S! }5 x
         2     5     8/ ~' C- g$ n9 H- Z' N
         3     6     9: x3 a+ T- Y1 y
    A4(:,:,3) =
    0 n# M' |, P9 B) P: q3 v     0    -2    -4) n7 U7 W# @& g3 W9 O
         2     0    -27 N% F) Y! j" Q+ x. b' T; u
         4     2     0
    2 z7 |7 b- _% H0 f% W9 E或用另一种原始方式可以定义:
    3 X! N8 t, M" D8 o  m- G例1-8
    & D  ^3 G# Q* \- L>> A1=[1,2,3;4,5,6;7,8,9];A2=A1';A3=A1-A2;) s3 y* y8 T7 e1 W5 y( E8 D% F' s
    >> A5(:,:,1)=A1, A5(:,:,2)=A2, A5(:,:,3)=A3  ~! y9 C4 C2 H* S% y  t
    A5(:,:,1) =7 I( N/ }  H8 e& z
         1     2     36 X- r) y" F9 n0 i
         4     5     6
    , b1 m- U4 g$ N& Q6 ~% I. n     7     8     9+ t0 N, d$ v; r( x% F
    A5(:,:,2) =
    ( W: D( g4 u$ W  j     1     4     77 \& A# O0 O! u5 o1 _; l0 ]9 \
         2     5     8, b0 x7 `  _7 m9 ]% ^3 {
         3     6     94 u4 u+ _5 y5 Q/ Y7 z: w% Q
    A5(:,:,3) =, x$ j3 ?0 m) q
         0    -2    -42 X1 B9 l& X3 p4 u( P0 E( v3 C0 t' C
         2     0    -2) M' S9 Z7 d. a# E
         4     2     0
    2 C# i7 H8 p$ H. }9 I4 I" e1.1.5  特殊矩阵的生成  \  F# |9 [# c, B" l3 ~, u
    命令  全零阵* C" D) B+ X$ u+ m( B. C# ^7 n
    函数  zeros
    7 j" q0 t8 W+ t# V( S; Q' Q格式  B = zeros(n)            %生成n×n全零阵
    * j7 Q: X& e6 {+ R0 {1 O- a2 zB = zeros(m,n)          %生成m×n全零阵
    - d0 Q) o. n& Q; H: SB = zeros([m n])        %生成m×n全零阵
    $ ]1 j" b" Z8 Z5 ]! QB = zeros(d1,d2,d3…)    %生成d1×d2×d3×…全零阵或数组
    : w6 E/ w' l/ |' WB = zeros([d1 d2 d3…])   %生成d1×d2×d3×…全零阵或数组, n- e4 v1 U6 }( ?3 ~
    B = zeros(size(A))       %生成与矩阵A相同大小的全零阵
    & ~4 g9 C9 l2 ^) x命令  单位阵
    5 E* l* i) M: ^3 \函数  eye
    5 |7 k- H: p. r9 I' [格式  Y  =  eye(n)          %生成n×n单位阵) f- J0 C) v/ j& s1 [4 U0 Y2 N
    Y  =  eye(m,n)        %生成m×n单位阵
    - Y8 ^# K9 T& L  X1 j' bY  =  eye(size(A))     %生成与矩阵A相同大小的单位阵( J9 P" [9 B  v* Z. B& n9 P
    命令  全1阵
    & W: R+ r! B7 |  i函数  ones- B+ a) p5 u) |8 w& @% p
    格式  Y = ones(n)             %生成n×n全1阵
    8 t* }7 U! X6 i. k! Y# }# hY = ones(m,n)           %生成m×n全1阵
    0 w1 c: p( O2 s% v- f( {& M3 EY = ones([m n])          %生成m×n全1阵  ?6 D" s! Y; g
    Y = ones(d1,d2,d3…)      %生成d1×d2×d3×…全1阵或数组
    * A4 }- k/ n$ L9 ?- \Y = ones([d1 d2 d3…])     %生成d1×d2×d3×…全1阵或数组+ C" s* p0 {! M9 O
    Y = ones(size(A))         %生成与矩阵A相同大小的全1阵% Q0 r: e/ u8 e) D7 r: }5 I
    命令  均匀分布随机矩阵; C- c1 [- A0 q% d5 x6 Q, Q2 k
    函数  rand ! W+ q2 y- M) u3 d
    格式  Y = rand(n)          %生成n×n随机矩阵,其元素在(0,1)内7 i" N7 w' j' K7 Q/ E: D0 s
    Y = rand(m,n)        %生成m×n随机矩阵
    0 x. m6 Y! |4 uY = rand([m n])       %生成m×n随机矩阵
    6 y" N& M0 r- J% \( s2 L+ fY = rand(m,n,p,…)     %生成m×n×p×…随机矩阵或数组& Q" Y$ o( Z6 ~4 u' s
    Y = rand([m n p…])    %生成m×n×p×…随机矩阵或数组
    7 l# O: Q  N, YY = rand(size(A))      %生成与矩阵A相同大小的随机矩阵$ e- V: O; p' m8 c
    rand                 %无变量输入时只产生一个随机数1 k- n+ _8 x" Y( W
    s = rand('state')         %产生包括均匀发生器当前状态的35个元素的向量
    * q8 U) Y: k+ B  H" erand('state', s)               %使状态重置为s
    6 k% M) L  t4 Y. D" o! _- b3 o' srand('state', 0)               %重置发生器到初始状态" C. B0 ]8 {! q1 k6 s( U& r
    rand('state', j)                %对整数j重置发生器到第j个状态
    9 i+ i9 V/ i: nrand('state', sum (100*clock))   %每次重置到不同状态, r* o: g" k2 n/ b) Z
    例1-9  产生一个3×4随机矩阵
    . y9 S3 L; l8 w& }! v>> R=rand(3,4)) m; t( P0 ?* T7 \9 T$ v
    R =
      U  W; T& R5 I7 D  0.9501    0.4860    0.4565    0.4447
    ( N9 y/ k! O! {/ d  0.2311    0.8913    0.0185    0.61540 d3 r( s9 Y, @
      0.6068    0.7621    0.8214    0.7919
    : Y5 h% y: M/ `. G# Q( `例1-10  产生一个在区间[10, 20]内均匀分布的4阶随机矩阵
    : o$ `' X5 ]: E% \6 ]5 E>> a=10;b=20;* l! |% ^9 z& J  Y9 h# ]- o2 O- ^! Y
    >> x=a+(b-a)*rand(4)
    9 o+ y0 j; R: x$ S1 Mx =
    1 n. f. ~2 T1 I( R   19.2181   19.3547   10.5789   11.3889; ~8 R+ c& N$ `3 A* f% z
       17.3821   19.1690   13.5287   12.0277. a: H! C6 |$ g6 c2 c. ]$ d2 g* @
       11.7627   14.1027   18.1317   11.9872
    $ X. k. _8 a& o% w+ L% [   14.0571   18.9365   10.0986   16.0379
    # G6 Y0 o/ [6 [命令  正态分布随机矩阵
    ( g0 g) @9 `0 e/ ?7 F% a2 u函数  randn
    ( g$ {% o% `! k3 w0 r格式  Y = randn(n)      
    zan
    已有 1 人评分体力 收起 理由
    jhzhang_09 + 5 欢迎新人

    总评分: 体力 + 5   查看全部评分

    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    firezzt 实名认证       

    2

    主题

    8

    听众

    71

    积分

    升级  69.47%

  • TA的每日心情

    2015-11-21 17:18
  • 签到天数: 10 天

    [LV.3]偶尔看看II

    群组学术交流A

    回复

    使用道具 举报

    firezzt 实名认证       

    2

    主题

    8

    听众

    71

    积分

    升级  69.47%

  • TA的每日心情

    2015-11-21 17:18
  • 签到天数: 10 天

    [LV.3]偶尔看看II

    群组学术交流A

    回复

    使用道具 举报

    0

    主题

    6

    听众

    56

    积分

    升级  53.68%

  • TA的每日心情
    慵懒
    2013-7-9 13:24
  • 签到天数: 11 天

    [LV.3]偶尔看看II

    自我介绍
    快乐、自信、喜欢挑战
    回复

    使用道具 举报

    firezzt 实名认证       

    2

    主题

    8

    听众

    71

    积分

    升级  69.47%

  • TA的每日心情

    2015-11-21 17:18
  • 签到天数: 10 天

    [LV.3]偶尔看看II

    群组学术交流A

    回复

    使用道具 举报

    {徐雷}        

    0

    主题

    5

    听众

    94

    积分

    升级  93.68%

  • TA的每日心情
    慵懒
    2013-3-10 16:57
  • 签到天数: 23 天

    [LV.4]偶尔看看III

    回复

    使用道具 举报

    firezzt 实名认证       

    2

    主题

    8

    听众

    71

    积分

    升级  69.47%

  • TA的每日心情

    2015-11-21 17:18
  • 签到天数: 10 天

    [LV.3]偶尔看看II

    群组学术交流A

    回复

    使用道具 举报

    赛心情        

    4

    主题

    10

    听众

    333

    积分

    升级  11%

  • TA的每日心情
    擦汗
    2015-5-5 13:58
  • 签到天数: 89 天

    [LV.6]常住居民II

    自我介绍
    进来学习
    回复

    使用道具 举报

    fjnanyuan        

    4

    主题

    9

    听众

    130

    积分

    升级  15%

  • TA的每日心情

    2013-5-10 08:19
  • 签到天数: 30 天

    [LV.5]常住居民I

    自我介绍
    我不恨数模
    回复

    使用道具 举报

    fjnanyuan        

    4

    主题

    9

    听众

    130

    积分

    升级  15%

  • TA的每日心情

    2013-5-10 08:19
  • 签到天数: 30 天

    [LV.5]常住居民I

    自我介绍
    我不恨数模
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-12 12:12 , Processed in 1.610718 second(s), 100 queries .

    回顶部