TA的每日心情 | 奋斗 2024-7-1 22:21 |
---|
签到天数: 2014 天 [LV.Master]伴坛终老
- 自我介绍
- 数学中国站长
 群组: 数学建模培训课堂1 群组: 数学中国美赛辅助报名 群组: Matlab讨论组 群组: 2013认证赛A题讨论群组 群组: 2013认证赛C题讨论群组 |
题 目 基于卫星无源探测的空间飞行器主动段
Y {, M. B$ i0 w' Y: H E, M轨道估计与误差分析6 J" D, X ~5 u, o$ ~
摘 要:( c, X. _9 T; @3 U1 f0 ^" t
该题可以建模成基于被动传感器的目标状态估计问题。所涉及到的问题有:常微分方程组的求解,坐标系的转换,时间配准,多个被动传感器量测的交叉定位,目标的状态估计,被动传感器的系统偏差估计等问题。
F( W; ?% B3 j( T% j8 L6 g2 |* H问题1是常微分方程组的求解问题。得到卫星的观测位置是后续处理的前提,已知简化的卫星运动微分方程及初值,即可以采用数值算法得出任意时刻观测卫星的状态,即卫星的位置和速度矢量。本文采用4阶,5阶的龙格库塔(Runge-Kutta)数值算法,利用Matlab语言得到了观测卫星在地固地心(ECEF)坐标系下的位置。
9 h- b) X4 l/ C& }问题2是利用多个被动传感器的目标状态估计问题,分成以下5个步骤对问题2求解。9 A4 [3 c3 g& o U9 s: F
第1步,将2颗卫星的数据进行同步,即时间配准。此时需要将卫星自身的位置和卫星观测数据都同步到同一时刻。卫星自身位置的同步同问题1的求解,即采用微分方程的数值解法得到同步的卫星位置。卫星观测数据的求解采用高次多项式拟合的方法,通过拟合出的连续函数,得到同步后的观测数据。" Q- m5 m8 a" T
第2步,将卫星的量测数据进行坐标转换。量测数据是基于局部UEN坐标系的,而目标的坐标系是在ECEF坐标系中的,因此需要将各个局部UEN坐标系中的量测转换到ECEF坐标系中。
7 Y* `: i W9 H5 k8 D4 o( D第3步,将2个卫星的量测进行交叉定位,得出目标的位置。由于卫星的量测从本质上来说是角度信息,单个卫星得不到目标的位置量测,需要通过交叉定位法得出目标的位置。由于误差影响,2个卫星的两条量测射线并不会刚好相交于一点,求解得在最小二乘意义下目标在基础坐标系下的位置。为了验证解的有效性,将最小二乘意义下估计出的三维坐标再代入观测方程反解出观测量,得到的观测量与真实的卫星量的平均相对误差在1.7%以内,说明最小意义下得出的$ A6 l: L. O' {- h n2 C
目标的轨道估计是合理的。为了进一步消除噪声影响,对估计出的位置坐标进行多项式拟合。, r7 f7 w' ^6 H6 k7 n
第4步,求解火箭运动方程中的参数。题目中并未给出飞行器的质量变化方程和,这需要数据和模型进行拟合得到。我们认为,由于燃料喷射的速度一定,故燃料在单位时间的消耗量恒定,也就是说是常数,而由题目知的大小恒定,设置为C。通过火箭的状态方程和交叉定位的结果,求解出了观测时刻的()mt()rVt()rVt()mt􀀅()()()CmtMt。
4 m) ^1 q% _7 C/ F e$ J第5步,求解火箭的状态。状态估计的经典算法就是卡尔曼滤波算法。此处采用连续时间的扩展卡尔曼滤波方法对问题求解。由于状态方程是一个连续方程,因此采用连续时间卡尔曼滤波算法。由于观测方程是一个非线性方程,因此采用扩展卡尔曼滤波算法。通过状态方程的演化和观测方程的更新,最终得出了目标的状态。% b; d# I! v* n6 f% I% k7 V% Q
问题3是观测的系统误差求解问题。对于能否采用逐点交汇法得到系统误差,本文给出了肯定的回答。首先对系统误差模型进行了建模,并将量测的真实值表示成为测量值和系统误差的函数。其次,通过交叉定位,得到了利用真实值对目标的交叉定位结果。然后,利用目标的交叉定位结果反推回量测。最后,在0点附近对系统误差进行搜索,使反推回的量测与真实的量测的差值在最小二乘的意义下最小,得出了量测的系统误差。除这种方法外,还可以采用状态扩维的方法,也就是说将系统误差也作为状态变量,来进行联合估计的方法,也可以求得系统偏差。求出量测的系统误差后,将量测值进行修正,后续的目标状态估计问题与问题2相同。4 K7 @, |# ?, r" Z
问题4首先是单个被动传感器对目标的定位问题。首先,利用问题3的系统误差估计值将传感器的观测值进行修正。其次,利用卫星对目标的2次连续估计对目标做粗略交叉定位,采用最小二乘法求解。在目标速度比卫星速度慢较多时,此方法是可行的。然后,利用交叉定位的结果对火箭运动参数进行估计。最后,用卡尔曼滤波估计出火箭的运动状态。
+ u& k) \% H6 I/ w问题4中还要讨论对于多颗卫星来观测多个飞行器的系统误差求解。求解方法可以采用扩维的思想来进行估计。每颗卫星自身的三个系统偏差都做为状态变量,每两颗卫星可以对一个空间飞行器进行轨道估计,这样两两组合,可以得到多个方程。将全部方程进行联立,同时对各卫星的系统误差的估计,则可以得到各卫星的系统误差的全局最小二乘解。
6 P* }( B! Z k- h4 G. J关键字:时间配准,坐标变化,交叉定位,最小二乘,卡尔曼滤波 \( b: g7 X( [2 M) q& m
( ~0 x5 K( x) f2 }- |
- S3 M2 e8 \9 @
B10698011.zip
(1.1 MB, 下载次数: 133)
9 z9 e1 m8 G' U$ _ |
zan
|