QQ登录

只需要一步,快速开始

 注册地址  找回密码
楼主: magic2728
打印 上一主题 下一主题

【原创】美赛经验谈之三:怎样进行论文阅读

  [复制链接]
字体大小: 正常 放大

0

主题

8

听众

43

积分

升级  40%

  • TA的每日心情
    郁闷
    2016-1-30 01:50
  • 签到天数: 14 天

    [LV.3]偶尔看看II

    社区QQ达人

    群组2016美赛公益课程

    群组2016美赛交流群组

    211#
    发表于 2016-1-14 20:11 |只看该作者
    |招呼Ta 关注Ta
    回复

    使用道具 举报

    0

    主题

    8

    听众

    43

    积分

    升级  40%

  • TA的每日心情
    郁闷
    2016-1-30 01:50
  • 签到天数: 14 天

    [LV.3]偶尔看看II

    社区QQ达人

    群组2016美赛公益课程

    群组2016美赛交流群组

    回复

    使用道具 举报

    mathant        

    0

    主题

    12

    听众

    31

    积分

    升级  27.37%

  • TA的每日心情
    难过
    2016-3-7 23:23
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    自我介绍
    数院狗
    回复

    使用道具 举报

    yw828        

    3

    主题

    12

    听众

    61

    积分

    升级  58.95%

  • TA的每日心情
    开心
    2016-1-30 07:54
  • 签到天数: 10 天

    [LV.3]偶尔看看II

    群组2016美赛交流群组

    大家在学习数学建模这门课程或准备比赛的时候,往往都是从教材开始的,教材的系统性让我们能够很快,很深入地了解前人在数学模型方面已有的研究成果,并最快地吸收他们为自己所用,但是常常有很多同学抱怨说书太厚,介绍太过于简略而无法看懂,操作性不强等等,也不知道读哪本书更好,把每个模型应该掌握到哪个地步而没有方向,更害怕浪费了宝贵的时间。在此,我向大家隆重推荐建模教程学习的基本要领:三步阅读法。
    对于任何一本教材,一份资料里介绍的一种数学模型的建立,或者一种算法,你都要问自己三个问题:
    1. 这个模型叫什么名字?
    2. 这个模型属于什么类型,能够解决具有哪类特征的问题?
    3. 这个模型的具体操作步骤怎么实现?
    当你能够学完教材上的这个模型,并能够查找相关资料,实例加以巩固,自己能够非常清晰地回答以上三个问题,那么,这个模型就完全印在你的脑子里而融会贯通了。
    第一个问题是这个模型叫什么,就像我们C++里面学的对象名一样,或者是matlab里说的句柄,也是我们通过论文形式与评委进行沟通的重要手段,要知道这个模型的名字,它的相关产生背景,和它类似的模型,有什么区别等等,这种文字性的东西的记忆最终会体现在论文的字里行间,积累越多,论文就会写得越流畅。
    第二个问题就不像第一个问题那样浮于模型表面了,而是在深入了解模型的建立思想、阅读了一定的例子之后,自己在脑海里可以形成一个印象,这个方法可以解决什么类型的问题?问题的特征是什么?有什么样的背景可以联想到这个方法?这样,等出现类似的问题时,你会更加容易地搜索到对应的方法。
    第三个问题,也就是操作层面上的,这个模型可以用什么软件实现?参数怎么调?有没有现成的代码供参考?每一步的操作涵义是否清楚?当你明白了一个模型或者是算法的思想之后,软件操作和程序代码应该是像文思泉涌般跃然纸上才对,而且这个过程里会遇到很多意想不到的,纸上谈兵时看不到的困难,因为具体的操作要受你的系统环境、软件版本、时间限制等各种方面的现实考验,没有什么捷径,只有平时多练,多做,自然在临场你能最快地找到解决的办法。
    用一个例子说明一下:
    姜启源老师主编的《数学模型》一书第三章优化模型,读完7个小节,也就是7个例子之后,你对优化模型应该有如下的认识:
    1. 模型名字:优化模型,也叫数学规划,包括线性规划、目标规划、整数规划、非线性规划、动态规划等等各自能够解决决策变量为整数或实数,目标函数为线性或者非线性的问题,是最常见的数模问题。
    2. 这是优化类模型,能解决问题的特征是问题要求某些量达到最大或最小,比如销售量最大化,森林火灾造成的损失最小等等,而且我们可以人为地控制某些变量,比如员工的上班时间,原材料的投入量,消防队员救援的策略等等。只要是存在可控制的量和要达到最优的目标,这就是一个优化问题。
    3. 比较标准的优化问题,就像教材上对它的分类一样,可以直接用lingo软件解决,而复杂的非标准而有很多细节的优化问题则需要手动操作和很多其他灵活的处理,或者还需要用动态规划的方法弄清楚问题发展过程后加以解决,总的来说,优化问题的建模分为这么几个步骤:
    a. 找到可以控制的决策变量;找到待优化的优化目标;
    b. 寻找决策变量对优化目标的影响,写出目标函数;
    c. 对目标函数用求导等数学工具求出最值和对应的决策变量的取值;
    d. 回到原问题予以解答。
    对于更加细化的问题,比如整数规划模型,模拟退火算法等等,我们也可以更加详细地顺着这样的思路去想问题,以此为思路,为深度要求来学习书本上的知识。
    话说回来,学数学模型,其实看哪本书都可以,一本书只是一个线索,要学懂它,只要按照以上的标准,能回答这三个问题,就可以结束了。其实很多时候一本书上的内容真的不够,往往需要读者能以此为引导去查找相关资料才能真正学懂一个模型,一种算法。所以,学数模最关键的是要用心去做,用心去想,多多利用各种资源平台去积累相关的知识,最终达到融会贯通地地步。
    美赛和其他建模比赛相比,看重的更多的是大家的实力,所以在平时教材阅读的时候就应该用正确的方法多多积累,才能够用实力去拿下理想中的大奖。希望读者能沉下心来,用心思考,慢慢积累,进而掌握数学模型这门技术,更好地服务于大家的比赛和深造,谢谢大家阅读本文!
    另外推荐大家阅读《数学建模方法与分析》 Mark M. Meerschaert  机械工业出版社,这本书是美赛官方组委会出版的,对熟悉美赛的建模套路有着事半功倍的效果,且内容由浅入深,无论基础如何军能从里面得到想要的收获,希望大家都能从建模之旅中收获自己想要的知识和能力!
    回复

    使用道具 举报

    yw828        

    3

    主题

    12

    听众

    61

    积分

    升级  58.95%

  • TA的每日心情
    开心
    2016-1-30 07:54
  • 签到天数: 10 天

    [LV.3]偶尔看看II

    群组2016美赛交流群组

    回复

    使用道具 举报

    0

    主题

    10

    听众

    27

    积分

    升级  23.16%

  • TA的每日心情
    奋斗
    2016-2-1 08:37
  • 签到天数: 5 天

    [LV.2]偶尔看看I

    楼主的帖子怎么灰常不错,值得分享^_^样?赶紧试试这里的快速回复给楼主点评论吧
    回复

    使用道具 举报

    0

    主题

    12

    听众

    7

    积分

    升级  2.11%

    该用户从未签到

    自我介绍
    yes
    回复

    使用道具 举报

    widen        

    0

    主题

    12

    听众

    34

    积分

    升级  30.53%

  • TA的每日心情

    2017-1-21 16:59
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    社区QQ达人

    回复

    使用道具 举报

    xzyxzyxzy        

    0

    主题

    12

    听众

    31

    积分

    升级  27.37%

  • TA的每日心情
    开心
    2016-4-3 16:00
  • 签到天数: 2 天

    [LV.1]初来乍到

    自我介绍

    群组2016美赛交流群组

    回复

    使用道具 举报

    Sybil12        

    0

    主题

    9

    听众

    61

    积分

    升级  58.95%

  • TA的每日心情
    难过
    2016-1-29 22:20
  • 签到天数: 16 天

    [LV.4]偶尔看看III

    自我介绍
    准备2015年国赛
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-17 08:30 , Processed in 0.812054 second(s), 102 queries .

    回顶部