QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1177|回复: 0
打印 上一主题 下一主题

如何在spss实现PSM

[复制链接]
字体大小: 正常 放大
SWORD_窝        

1

主题

7

听众

30

积分

升级  26.32%

  • TA的每日心情
    难过
    2013-11-27 14:05
  • 签到天数: 1 天

    [LV.1]初来乍到

    自我介绍
    Doctor
    跳转到指定楼层
    1#
    发表于 2013-11-27 13:53 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    1. Generate the “propensity scores” (an estimate of how likely it is that an individual with certain characteristics will end up in treatment A): G+ V. h2 p) C. b( v
    a)      Select logistic regression (Analyze  --> Regression  --> Binary Logistic)# N- m9 r4 q3 T3 k. X8 |+ q2 M; R, u
    b)      Select the dependent variable (whether the client received treatment A or not). This has to be a dichotomous variable. If it does not exist in the form you want it, use “Recode (into different variable)” under “Transform” in the SPSS menu before running the logistic regression.
    4 b+ ^. y$ M) H2 ?! P9 {c)      Move all the variables you believe important into the box for “Covariates.” (e.g. gender, age etc. Important variables = Those that influence both the outcome of the treatment and whether the person receives treatment A or not).
    # B& f; }" v6 r8 S. Fd)      In the menu for logistic regression, first click  “Save” and select “Probabilities” under “Predicted Values.” After this click “Continue.” (We need to save the result of the regression since we are later going to compare individuals with similar propensity score values.)1 z2 s0 M! }4 C! V- \
    e)      Click “OK” and in the unlikely case that no mistake has been made, SPSS will run the regression and add a new column to your dataset which represents the “Propensity score” (often automatically labelled “pre_1”, “pre_2” and so on) You will also get an output with lots of information about the regression result (coefficient values, how many cases it correctly predicts and so on. Ignore this for now.); T* t. p, a. s. \/ x% b

    ' C9 h( ?* a" z: G2. Compare individuals with similar propensity scores (using subclassification)
    2 @  p# |* A, s6 Oa)      In the SPSS menu system, select “Transform”  --> ”Categorize Variables” and select the variable you just created/saved under in the binary regression (the propensity score, often labelled “pre_1”). Also change the number of groups to 5. The new categorized variable will (automatically) be called “npre_1”, “npre_2” and so on.  z! o4 f! k/ f0 R! ?% ~
    b)      You can now compare the groups within the same category by – for instance – “Analyze”  --> “Descriptive Statistics”  --> “Crosstabs” or “OLAP Cubes” under “Analyse”  --> “Reports” and choosing “npre_1” as the layer/classification variable. By so doing you will get the mean result for those with similar propensity scores (here defined as less than 0.2 difference) who received treatment A compared those who did not.  / Y5 X: @- W1 f: a8 ~8 @! `# D$ l  ?
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-16 02:25 , Processed in 0.415972 second(s), 52 queries .

    回顶部