数学模型的建立、比较和应用 4 _) F+ b# @3 s7 A3 h: s& z$ p
8 ]6 ^. b6 ~/ v. u8 ~
一、引论 ! o1 O! v0 S: U3 L0 N5 [; @" T% i0 L% s
实际问题往往是纷繁而复杂的,而其中的规律也是隐藏着的,要想直接用计算机来求解实际问题往往有一定的困难。计算机擅长的是解决数学问题。因此,我们有必要将实际问题抽象成数学模型,然后再用计算机来对数学模型进行求解。
1 M6 r; C) Y; u6 J( R3 v+ Z: n2 L与实际问题相比,数学模型有以下几个性质:
0 ]" V5 Q: x+ p" { u/ x+ B1.抽象性:数学模型是实际问题的一种抽象,它去除了实际问题中与问题的求解无关的部分,简明地体现了问题的本质。这一点是下面两个性质的基础。 - |' d% Y9 X* k U6 ~# Z
2.高效性:数学模型中各个量之间的关系更为清晰,容易从中找到规律,从而提高求解的效率。由于这一点是由数学模型的抽象性决定的,因此数学模型的抽象化程度对数学模型效率的高低有重要的影响,这一点将在第二部分中详细阐述。 0 {( K+ m- F; r' n: h
3.可推广性:数学模型可以推广到具有相同性质的一类问题中。换句话说,解决了一个数学模型就解决了一类实际问题。这里的“相同性质”是指相同的本质,表面看似毫不相干的问题可能有着相同的本质。由于这一点也是由数学模型的抽象性决定的,因此数学模型的抽象化程度对数学模型的推广范围也有重要的影响,这一点将在第三部分中详细阐述。 ! L$ f1 ?& W/ h4 w. n/ \0 E, _
|